构造平衡二叉搜索树(AVL)(Java实现)

构造平衡二叉搜索树(AVL)(Java实现)

定义

在之前的博客中提到过,二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,引入了平衡二叉搜索树。当向二叉搜索树中插入新结点后,保证每个结点的左右子树高度之差的绝对值不超过1。

特性

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在log2 n,搜索时间复杂度O(log2 n)

AVL树的插入

(1)按照二叉搜索树的方式插入新节点

(2)调整节点的平衡因子

新结点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性。本文bf = H(left) - H(right),来看一下插入结点后parent结点的bf的变化。

插入前parent.bf的值(平衡)插入位置插入后parent.bf的值(可能不平衡)
-1left0
-1right-2
0left1
0right-1
1left2
1right0

当插入节点后,若平衡因子的值为**(-2或2),**那么就要对树的结构进行调整。根据结点插入位置的不同,AVL树的失衡情况分为四种 。

  • 左左失衡 对失衡结点右旋

    正常插入调整树结构
    在这里插入图片描述在这里插入图片描述
  • 左右失衡 先对失衡结点的left左旋,再对失衡结点右旋

    正常插入调整树结构调整树结构
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
  • 右右失衡 对失衡结点左旋

    正常插入调整树结构
    在这里插入图片描述在这里插入图片描述
  • 右左失衡 先对失衡结点的right右旋,再对失衡结点左旋

    正常插入调整树结构调整树结构
    在这里插入图片描述在这里插入图片描述在这里插入图片描述

旋转

下面只对左旋进行分析。

正常插入调整树结构
在这里插入图片描述在这里插入图片描述

在上图中出现了右右失衡,我们对失衡结点parent进行左旋,可以看到我们需要更改三对连接关系。

 private  void leftRotate(Node parent){
		
     	//定义需要更改连接的结点
        Node parentOfParent = parent.parent;
        Node right = parent.right;
        Node leftOfRight = right.left;
		
     	//失衡结点的右子树上升
        right.parent = parentOfParent;
        if (parentOfParent == null){
            root = right;
        }else if (parent == parentOfParent.left){
            parentOfParent.left = right;
        }else {
            parentOfParent.right = right;
        }

	
        right.left = parent;
        parent.parent = right;
		
        parent.right = leftOfRight;
        if (leftOfRight != null){
            leftOfRight.parent = parent;
        }
    }

具体代码实现

import java.util.Random;
import java.util.Stack;

// 定义节点
class Node{
    int key;
    int bf;      // 平衡因子  等于H(left) - H(right)

    Node left;
    Node right;
    Node parent;

    public Node(int key,Node parent) {
        this.key = key;
        this.bf = 0;
        this.left = null;
        this.right = null;
        this.parent = parent;
    }
}

public class AVLTree {



    private Node root = null;

    private  void insert(int key){
        if (root == null){
            root = new Node(key,null);
            return;
        }


        Node parent = null;
        Node cur = root;

        while (cur != null){
            if (cur.key == key){
                throw new RuntimeException(key +"已经重复了");
            }else if (cur.key > key){
                parent = cur;
                cur = cur.left;
            }else {
                parent = cur;
                cur = cur.right;
            }
        }


        if (key < parent.key){
            cur = parent.left = new Node(key,parent);
        }else{
            cur = parent.right = new Node(key,parent);
        }

        //以上操作完成正常搜索树的插入过程
        // cur 是新插入的结点 ,parent是要调整bf的结点

        while (true){

            //更新parent的 bf
            if (cur == parent.left){
                parent.bf++;
            }else{
                parent.bf--;
            }

            if (parent.bf == 0){
                break;
            }else if (parent.bf == 2){
                //左左失衡
                if (cur.bf == 1){
                    fixLeftLeftLoseBalance(parent);
                }else{
                    //左右失衡
                    fixLeftRightLoseBalance(parent);
                }
                break;
            }else if (parent.bf == -2){
                //右右失衡
                if (cur.bf == -1){
                    fixRightRightLoseBalance(parent);
                }else {
                    //右左失衡
                    fixRightLeftLoseBalance(parent);
                }
                break;
            } else if (parent == root) {
                break;
            }


            // 继续向上蔓延
            cur = parent;
            parent = parent.parent;
        }

    }
    // 左旋
    private  void leftRotate(Node parent){

        Node parentOfParent = parent.parent;
        Node right = parent.right;
        Node leftOfRight = right.left;

        right.parent = parentOfParent;
        if (parentOfParent == null){
            root = right;
        }else if (parent == parentOfParent.left){
            parentOfParent.left = right;
        }else {
            parentOfParent.right = right;
        }


        right.left = parent;
        parent.parent = right;

        parent.right = leftOfRight;
        if (leftOfRight != null){
            leftOfRight.parent = parent;
        }
    }

    // 右旋
    private void rightRotate(Node parent){
        Node parentOfParent = parent.parent;
        Node left = parent.left;
        Node rightOfLeft = left.right;

        left.parent = parentOfParent;
        if (parentOfParent == null){
            root = left;
        }else if (parent == parentOfParent.left){
            parentOfParent.left = left;
        }else {
            parentOfParent.right = left;
        }

        left.right = parent;
        parent.parent = left;

        parent.left  = rightOfLeft;
        if (rightOfLeft != null){
            rightOfLeft.parent = parent;
        }
    }

    // 左左失衡调整
    private void fixLeftLeftLoseBalance(Node parent) {
        Node node = parent;
        Node leftOfNode = node.left;

        //对失衡结点右旋
        rightRotate(node);
        node.bf = leftOfNode.bf = 0;
    }

    // 左右失衡调整
    private void fixLeftRightLoseBalance(Node parent) {
        Node node = parent;
        Node leftOfNode = node.left;
        Node rightOfLeftOfNode = leftOfNode.right;


        // 先对失衡结点的左子树左旋
        leftRotate(leftOfNode);
        //对失衡结点右旋
        rightRotate(node);

        //更新各个结点的bf
        if (rightOfLeftOfNode.bf == 1){
            node.bf = -1;
            leftOfNode.bf = 0;
            rightOfLeftOfNode.bf = 0;
        }else if (rightOfLeftOfNode.bf == -1){
            node.bf = 0;
            leftOfNode.bf = 1;
            rightOfLeftOfNode.bf = 0;
        }else{
            node.bf = leftOfNode.bf = rightOfLeftOfNode.bf = 0;
        }

    }


    // 右右失衡调整
    private void fixRightRightLoseBalance(Node parent) {
        Node node = parent;
        Node rightOfNode = node.right;

        //对失衡结点左旋
        leftRotate(node);
        node.bf = rightOfNode.bf = 0;

    }


    // 右左失衡调整
    private void fixRightLeftLoseBalance(Node parent) {
        Node node = parent;
        Node rightOfNode = node.right;
        Node leftOfRightOfNode = rightOfNode.left;

        // 对失衡结点的右子树右旋
        rightRotate(rightOfNode);
        // 对失衡结点左旋
        leftRotate(node);

        if (leftOfRightOfNode.bf == 1){
            rightOfNode.bf = -1;
            parent.bf = 0;
            leftOfRightOfNode.bf = 0;
        }else if (leftOfRightOfNode.bf == -1){
            node.bf = 1;
            rightOfNode.bf = 0;
            leftOfRightOfNode.bf = 0;
        }else{
            node.bf = rightOfNode.bf = leftOfRightOfNode.bf = 0;
        }
    }



    private boolean contains(int key){
        Node cur = root;

        while (cur != null){
            if (cur.key == key){
                return  true;
            }else if (cur.key > key){
                cur = cur.right;
            }else{
                cur = cur.left;
            }
        }

        return  false;
    }

    private void inOrder(){
        Node cur = root;
        Stack<Node> stack = new Stack<>();

        while (!stack.isEmpty() || cur != null){
            while (cur != null){
                stack.push(cur);
                cur = cur.left;
            }

            cur = stack.pop();
            System.out.print(cur.key + " ");
            cur = cur.right;
        }
    }


    public static void main(String[] args) {
        Random random = new Random(20210317);

        AVLTree tree = new AVLTree();

        for (int i = 0; i < 15; i++ ){
            int r = random.nextInt(100);
            try {
                tree.insert(r);
            }catch (RuntimeException e){
                System.out.println(e.getMessage());
            }
        }

        tree.inOrder();
    }
}

AVL树性能分析

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即O(log 2 (N))。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值