搭建谷歌Gemini

Gemini是GoogleAI的大型语言模型,具备文本生成、翻译、问答等功能,但免费版有限制。文章介绍了如何获取APIkey、部署方法(Vercel和Docker),以及注意事项,包括可能的网络访问需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

Gemini是Google AI于2023年发布的大型语言模型,拥有强大的文本生成、理解和转换能力。它基于Transformer模型架构,并使用了大量文本和代码数据进行训练。Gemini可以执行多种任务,包括:

  • 生成文本:可以生成各种类型的文本,如文章、代码、诗歌、剧本、音乐作品等。
  • 翻译语言:可以支持多种语言之间的互译,并能根据上下文进行调整。
  • 回答问题:可以回答开放式、挑战性或奇怪的问题,并提供详细的解释。
  • 完成指令:可以按照用户的指令完成各种任务,如写邮件、写代码、写剧本等。

我想说的是,Gemini真的比ChatGPT3.5香。Gemini当然也提供了免费试用,单做了一些限制:

  • 调用频率: 每分钟最多 60 次调用。
  • 文本长度: 每个请求最多 1024 个字符。
  • 图片大小: 每张图片最大 1 MB。
  • 输出文本长度: 每个请求最多 2048 个字符。
  • 功能限制: 免费版不提供部分高级功能,例如语义分析、情感分析、知识图谱等。

另外根据谷歌提供的定价信息,Gemini提供了两种收费方式:

1. 按需付费:

  • 按照您使用的计算资源和存储空间付费。
  • 适合偶尔使用 Gemini 或需要灵活性的用户。
  • 价格如下:
    • 每千个字符 0.00025 美元
    • 每张图片 0.0025 美元
    • 每千个输出字符 0.0005 美元

2. 订阅:

  • 每月支付固定费用,获得一定量的计算资源和存储空间。
  • 适合经常使用 Gemini 或需要稳定性能的用户。
  • 价格如下:
    • Gemini Pro:每月 19.99 美元
    • Gemini Enterprise:每月 39.99 美元

部署关键点

1、获取APIkey;

2、部署服务器:需要海外的服务器;或者使用Vercel 平台部署(本文使用)

3、可能需要有“御剑上网”能力(懂的都懂)

获取API keys

使用Google帐号访问Gemini官网

点击Get Gemini API key in Google AI Studio,在跳转页面点Get API key,然后点击 Create API key in new project,记得点击Copy保存起来,后面会用到

Vercel 一键部署

访问GeminiProChatGitHub项目,README最下面的Deploy章节下的“Deploy With Vercel(Recommended)”

Create Git Repository

点击上图的Deploy会自动跳转到vercel(此处需要有vercel帐号或者GitHub帐号授权登录),自定义repostory name:gemini-pro-chat,点击create

Configure Project

跳转后的页面需要输入GEMINI_API_KEY(前面我们获取到的API key)

Build Project

耐心等待,等部署完成后,点击 Continue to Dashboard 进入控制面板。可以点击Visit按钮跳转访问,也可以直接复制域名访问。但是,Vercel分配的域名大概率需要“御剑上网”。如果要解决该问题需要施展钞能力,购买一个可以“御剑上网”的域名。其实很便宜,1年期新注价格也就6块钱。

如果要配置自己的域名,上图Domains进去,编辑项目,输入自己的域名,然后保存即可。

阿里云域名注册网址:https://wanwang.aliyun.com/domain/

Docker部署 

当然也可以docker部署,个人感觉最简单的一种,但是如果部署在国内服务器,比如自己笔记本或者公司内网服务器上,都可能会失败。原因有二:1、笔记本或者服务器需要访问互联网;2、需要“御剑上网”。

$ docker pull babaohuang/geminiprochat:latest

$ docker run --name geminiprochat \
--restart always \
-p 3000:3000 \
-itd \
-e GEMINI_API_KEY=上面获取到的API keys \
babaohuang/geminiprochat:latest

### 本地部署 Gemini 模型的方法 #### 宝贵资源与工具 为了实现 Google 的 Gemini 大模型在本地环境中的部署,可以利用一些开源项目以及特定的技术栈完成这一目标。例如,在 GitHub 上存在多个社区开发的项目支持 Gemini 模型的本地化操作[^1]。 #### 参数配置与界面搭建 通过访问 `hjandlm/Streamlit_Gemini_Visual` 这一仓库,可以获得关于 Gemini 模型可视化的具体指导。此项目的重点在于提供了一个基于 Streamlit 构建的交互式前端应用,允许用户选择不同的 Gemini 模型变体并调整其参数设置。以下是该过程的一个简化版本: ```python import streamlit as st st.title('Gemini Model Visualization') model_type = st.selectbox( 'Select a Gemini model:', ('gemini-pro', 'gemini-standard') ) if st.button('Run'): st.write(f'You selected {model_type}') ``` 上述代码片段展示了如何构建一个简单的用户界面用于选取所需的 Gemini 版本。 #### Web UI 实现简易对话功能 另一个值得注意的是由 babaohuang 开发的最小化网络用户接口 (`Minimal web UI`) ,它能够快速启动 Gemini Pro 聊天服务[^2]。该项目同样依赖于 Python Flask 或 FastAPI 来创建 RESTful API 接口供客户端调用。 #### 使用 Ollama 平台管理多类 LLMs 尽管主要讨论的是 Gemini 模型,但也可以参考其他大型语言模型(LLMs)如 Llama 系列的部署流程作为借鉴[^3]。Ollama 提供了一种统一的方式来管理和运行多种预训练好的人工智能模型,包括但不限于 Meta 的 Llama 和 Alpaca 。一旦安装好 Ollama 后端服务器,则可通过命令行轻松加载新的模型文件。 #### 下载与执行 Gemma AI 对于希望完全脱离云端限制的情况,还可以考虑按照专门针对 Gema AI 设计的教学指南来进行独立安装[^4]。这通常涉及以下几个方面的工作: - 获取官方发布的源码包及其配套的数据集; - 准备足够的硬件计算能力以满足推理需求; - 根据文档指示逐步编译程序直至成功启动服务进程; 最终效果将是拥有一套完整的、能够在个人电脑或者专用服务器上正常工作的 Gemini 应用解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值