如何让 Raft 更稳健,使用 Pre-vote

本文参考文献 《Consensus: Bridging Theory and Practice》

1. Provote 解析原文

该算法解决的是某台机器被隔离后,再次加入时出现的扰动其他机器的问题。

1. 防止服务器重新加入集群时引发的中断

Raft领导者选举算法的一个缺点是,当一台已从集群中隔离出去的服务器重新获得连接时,很可能会导致中断。当服务器被隔离时,它不会收到心跳信号,不久之后它将增加它的任期号并尝试发起选举,尽管它可能没有足够的票数来成为领导者。当服务器某个时候重新获得连接后,它较大的任期号会通过其请求投票或通过其追加条目的响应传播到集群的其他部分。这将迫使集群领导者退位,而必须进行新的选举来选出新的领导者。这样的事件可能很少见,每次只会导致一位领导者退位。

如果需要,可以通过增加额外的阶段来扩展Raft的基本领导者选举算法。

2. 预投票算法

预投票算法的引入是为了解决服务器重新加入集群时中断集群的问题。当服务器被隔离时,它无法增加其任期号,因为它无法从集群的大多数节点那里得到许可。然后,当它重新加入集群时,它仍然无法增加其任期号,因为其他服务器已经定期从领导者那里接收到心跳。一旦服务器接收到来自领导者本身的心跳,它将回到追随者状态(在相同的任期内)。

我们建议在可能从额外的健壮性中受益的部署中扩展预投票。我们还在AvailSim中测试了它在各种领导者选举场景中的表现,发现它并没有显著影响选举性能。

2. 原文

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种为有效的回归测解决方案,尤其是在处理大规模数据集时能够保持较高的测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值