剑指 Offer 16. 数值的整数次方

题目:

实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。
示例 1:

输入: 2.00000, 10
输出: 1024.00000
示例 2:

输入: 2.10000, 3
输出: 9.26100
示例 3:

输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zhi-de-zheng-shu-ci-fang-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路:

但是看到这道题,第一感觉这不是送分题吗=。=,直接反手就给他分两种情况大于0和小于0,来一手暴力循环乘起来就完事了,然后并没有这么简单。
在测试用例:
1.00000,2147483647 这里直接超时,通过判断1 直接返回。
2.00000,-2147483648 这里答案是0.0 我得到得失1.0,思考了好久,gg了好几次,一看貌似有点儿熟悉,这不就是int的最大值和最小值吗。-2147483648 绝对值 就是2147483648 >2147483647 ,超出范围了t=-t结果还是-2147483648.知道了原因就很好解决了用long 来存储咯,然后事情并没有这么简单,=。=超时了。这是逼着我不能暴力了,只能学习新的快速幂。

快速幂:
来自与leetcode的一个题解
在这里插入图片描述
不得不说,这个大佬,老数学家了=。= 看到这里我再来解释一下就是
普通算法。
3的5次方=33333 需要 5 次循环,随着n增加而循环次数增加
快速幂:
5的二进制=101;
3 的 五 次 方 = ( 3 ∗ 1 ) ∗ ( 3 ∗ 3 ∗ 0 ) ∗ ( 3 ∗ 3 ∗ 3 ∗ 3 ∗ 1 ) ∗ . . . . . 3的五次方=(3*1)*(3*3*0)*(3*3*3*3*1)*..... 3=(31)(330)(33331).....
其实就是固定需要循环32次,无论多大的数只需要循环32次,因为int是4个字节,转化为只有32位。

代码:

class Solution {
    public double myPow(double x, int n) {
        if(x == 0) return 0;
        long b = n;
        double res = 1.0;
        if(b < 0) {
            x = 1 / x;
            b = -b;
        }
        while(b > 0) {
        	//判断十进制最后一位是否为1
            if((b & 1) == 1) res *= x;
            //计算每一个位上的幂次后的值
            x *= x;
            //右移一位
            b =b>> 1;
        }
        return res;
    }
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值