一、原码,反码,补码
计算机中的整数有三种二进制表示方法,即原码,反码,补码。
三种表示方法都有符号位和数值位两部分,符号位都是0表示正数,1表示负数。
原码:这个整数二进制的表示形式。
反码:除了符号位,其他位按位取反。
补码:在反码的基础上加1。
正数的原码,补码,反码相同。
例如:
//其中第一位是符号位,0表示正数,1表示负数
正数4:
原码:00000100
反码:00000100
补码:00000100
负数-5:
原码:10000101
反码:11111010 //符号位不变,原码取反
补码:11111011 //符号位不yuanma变,反码+1
对于整形来说:数据存放在内存中的是补码。
因为在计算机系统中,数值一律用补码表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器),此外,补码与原码相互转换,其运算过程是相同的,不需要额外电路。
二、大小端介绍
什么是大端小端?
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地 址中。
为什么有大端和小端?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short 型,32 bit的long型(要看具体的编译器)。
另外,对于位数大于8位的处理器,例如16位或者32 位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
如何判断是大端还是小端?
可以强制转换类型来判断,int i = 1;如果输出的是1的话则为小端,若输出为0的话就是大端。
原理如下,首先i是一个4字节的整型,其三个高位字节内容都是0,一个低位字节内容是1。当把它强制转成一个字节的char类型时,就只读取一个字节的内容。输出打印时,是从低地址开始打印。
如果是大端存储,即低位数据保存在高地址中,低地址存放的是高位数据,则输出的是0;
反之,如果是小端存储,即高位数据保存在高地址中,低地址存放的是低位数据,则输出的是1。
int main()
{
int i = 1;
char j = (char) i;
printf("%d", j);
return 0;
}
三、浮点数的存储
浮点数存储形式
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
float单精度数据类型的存储
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。
double双精度数据类型的存储
IEEE 754规定:
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
可以发现,某一些小数无法用二进制准备表示,例如3.3这种小数,每次用2^N分割否不能表示完整,只能保证一定精度。
四、总结
正数的原码,反码,补码全相同,负数的反码由原码转换来(符号位不变,其余位取反),补码为反码+1。
大小端存储模式不同,在某些情况下,同样的数据经过不小心的处理,在不同机器上取出的值各有不同。