近期,人工智能领域的顶级会议——2024年神经信息处理系统会议(NeurIPS)拉开帷幕。会上收录的亚马逊论文,展示了其在人工智能研究领域的广泛性。
近年来,大语言模型(LLM)和其他基础模型在该领域占据主导地位,亚马逊的论文反映了这一趋势,涵盖检索增强生成、使用LLM进行代码生成、常识推理和多模态模型等主题。训练方法也是备受关注的领域,相关论文涉及了内存高效训练、基于人类反馈的强化学习、拒绝分类以及Transformer模型的收敛速度等。
亚马逊的论文也展示了对多臂老虎机问题(亚马逊长期向NeurIPS提交论文的主要内容)和语音处理等主题的持续关注,还有诸如将机器学习应用于科学计算和自动推理等新领域。un一篇题为《B’MOJO: Hybrid state space realizations of foundation models with eidetic and fading memory》的论文,就提出了一种基于转导学习概念的机器学习新范式。
自动推理
论文标题:
Neural model checking
论文作者:
Mirco Giacobbe、Daniel Kroening、Abhinandan Pal、Michael Tautschnig
论文地址:
https://www.amazon.science/publications/neural-model-checking
多臂老虎机问题
论文标题:
Adaptive experimentation when you can’t experiment
论文作者:
Yao Zhao、Kwang-Sung Jun、Tanner Fiez、Lalit Jain
论文地址:
https://www.amazon.science/publications/adaptive-experimentation-when-you-cant-experiment
论文标题:
Online posterior sampling with a diffusion prior
论文作者:
Branislav Kveton、Boris Oreshkin、Youngsuk Park、Aniket Deshmukh、Rui Song
论文地址:
https://www.amazon.science/publications/online-posterior-sampling-with-a-diffusion-prior
代码生成
论文标题:
Training LLMs to better self-debug and explain code
论文作者:
Nan Jiang、Xiaopeng LI、Shiqi Wang、Qiang Zhou、Baishakhi Ray、Varun Kumar、Xiaofei Ma、Anoop Deoras
论文地址:
https://www.amazon.science/publications/training-llms-to-better-self-debug-and-explain-code
上图为论文中提出的数据收集和模型训练框架
常识推理
论文标题:
Can language models learn to skip steps?
论文作者:
Tengxiao Liu、Qipeng Guo、Xiangkun Hu、Jiayang Cheng、Yue Zhang、Xipeng Qiu、Zheng Zhang
论文地址:
https://www.amazon.science/publications/can-language-models-learn-to-skip-steps
计算流体力学
论文标题:
WindsorML:High-fidelity computational fluid dynamics dataset for automotive aerodynamics
论文作者:
Neil Ashton、Jordan B. Angel、Aditya S. Ghate、Gaetan K. W. Kenway、Man Long Wong、Cetin Kiris、Astrid Walle、Danielle Maddix Robinson、Gary Page
论文地址:
https://www.amazon.science/publications/windsorml-high-fidelity-computational-fluid-dynamics-dataset-for-automotive-aerodynamics
大语言模型评估
论文标题:
SetLexSem Challenge:Using set operations to evaluate the lexical and semantic robustness of language models
论文作者:
Bardiya Akhbari、Manish Gawali、Nicholas Dronen
论文地址:
https://www.amazon.science/publications/setlexsem-challenge-using-set-operations-to-evaluate-the-lexical-and-semantic-robustness-of-language-models
为了评估大语言模型对集合成员语义变化的鲁棒性,亚马逊研究人员及其同事通过对上位词对(例如“哺乳动物”和“车辆”)进行采样,创建了“欺骗性”集合,并从中提取三种不同条件下的下位词:
与抽样的下位词相同;
更换半数成员;
随机抽样。
LLM在第二个条件(交换)下表现出独特的故障模式,第一个条件(未交换)的准确率均值和方差优于随机基线。上图可在该论文中找到。
内存管理
论文标题:
Online weighted paging with unknown weights
论文作者:
Orin Levy、Aviv Rosenberg、Noam Touitou
论文地址:
https://www.amazon.science/publications/online-weighted-paging-with-unknown-weights
模型架构
论文标题:
B’MOJO:Hybrid state space realizations of foundation models with eidetic and fading memory
论文作者:
Luca Zancato、Arjun Seshadri、Yonatan Dukler、Aditya Golatkar、Yantao Shen、Ben Bowman、Matthew Trager、Alessandro Achille、Stefano Soatto
论文地址:
https://www.amazon.science/publications/bmojo-hybrid-state-space-realizations-of-foundation-models-with-eidetic-and-fading-memory
隐私
论文标题:
Pre-training differentially private models with limited public data
论文作者:
Zhiqi Bu、Xinwei Zhang、Sheng Zha、Mingyi Hong
论文地址:
https://www.amazon.science/publications/pre-training-differentially-private-models-with-limited-public-data
论文标题:
Reconstruction attacks on machine unlearning: Simple models are vulnerable
论文作者:
Martin Bertran Lopez、Shuai Tang、Michael Kearns、Jamie Morgenstern、Aaron Roth、Zhiwei Steven Wu
论文地址:
https://www.amazon.science/publications/reconstruction-attacks-on-machine-unlearning-simple-models-are-vulnerable
检索增强生成(RAG)
论文标题:
RAGChecker:A fine-grained framework for diagnosing retrieval-augmented generation
论文作者:
Dongyu Ru、Lin Qiu、Xiangkun Hu、Tianhang Zhang、Peng Shi、Shuaichen Chang、Cheng Jiayang、Cunxiang Wang、Shichao Sun、Huanyu Li、Zizhao Zhang、Binjie Wang、Jiarong Jiang、Tong He、Zhiguo Wang、Pengfei Liu、Yue Zhang、Zheng Zhang
论文地址:
https://www.amazon.science/publications/ragchecker-a-fine-grained-framework-for-diagnosing-retrieval-augmented-generation
语音处理
论文标题:
CA-SSLR:Condition-aware self-supervised learning representation for generalized speech processing
论文作者:
Yen-Ju Lu、Jing Liu、Thomas Thebaud、Laureano Moro-Velazquez、Ariya Rastrow、Najim Dehak、Jesus Villalba
论文地址:
https://www.amazon.science/publications/ca-sslr-condition-aware-self-supervised-learning-representation-for-generalized-speech-processing
如论文提及,CA-SSLR方案及其时间通道注意力调节器,只有解码器的调节器和线性投影是可训练的,所有其他参数在适应过程中都被冻结。CA-SSLR通过集成中间LID/SV条件、保持预训练参数冻结(左)来改进SSL功能。可训练的时间通道注意力调节器集成了语言和发言人预测(右)。
训练方法
论文标题:
CoMERA:Computing- and memory-efficient training via rank-adaptive tensor optimization
论文作者:
Zi Yang、Ziyue Liu、Samridhi Choudhary、Xinfeng Xie、Cao Gao、Siegfried Kunzmann、Zheng Zhang
论文地址:
https://www.amazon.science/publications/comera-computing-and-memory-efficient-training-via-rank-adaptive-tensor-optimization
论文标题:
Optimal design for human preference elicitation
论文作者:
Subhojyoti Mukherjee、Anusha Lalitha、Kousha Kalantari、Aniket Deshmukh、Ge Liu、Yifei Ma、Branislav Kveton
论文地址:
https://www.amazon.science/publications/optimal-design-for-human-preference-elicitation
论文标题:
Rejection via learning density ratios
论文作者:
Alexander Soen、Hisham Husain、Philip Schulz、Vu Nguyen
论文地址:
https://www.amazon.science/publications/rejection-via-learning-density-ratios
论文标题:
Unraveling the gradient descent dynamics of transformers
论文作者:
Bingqing Song、Boran Han、Shuai Zhang、Jie Ding、Mingyi Hong
论文地址:
https://www.amazon.science/publications/unraveling-the-gradient-descent-dynamics-of-transformers
视频
论文标题:
One token to seg them all:Language instructed reasoning segmentation in videos
论文作者:
Zechen Bai、Tong He、Haiyang Mei、Pichao Wang、Ziteng Gao、Joya Chen、Lei Liu、Pichao Wang、Zheng Zhang、Mike Zheng Shou
论文地址:
https://www.amazon.science/publications/one-token-to-seg-them-all-language-instructed-reasoning-segmentation-in-videos
上图即论文中提出的视频对象分割框架
论文标题:
Video token merging for long-form video understanding
论文作者:
Seon Ho Lee、Jue Wang、Zhikang Zhang、David Fan、Xinyu (Arthur) Li
论文地址:
https://www.amazon.science/publications/video-token-merging-for-long-form-video-understanding
视觉语言模型
论文标题:
Unified lexical representation for interpretable visual-language alignment
论文作者:
Yifan Li、Yikai Wang、Yanwei Fu、Dongyu Ru、Zheng Zhang、Tong He
论文地址:
https://www.amazon.science/publications/unified-lexical-representation-for-interpretable-visual-language-alignment
星标不迷路,开发更极速!
关注后记得星标「亚马逊云开发者」
听说,点完下面4个按钮
就不会碰到bug了!
点击阅读原文查看博客!获得更详细内容!