NeurIPS 2024|精选论文速递,洞悉人工智能趋势

8af16debf67febb0f89aae3db18db412.gif

近期,人工智能领域的顶级会议——2024年神经信息处理系统会议(NeurIPS)拉开帷幕。会上收录的亚马逊论文,展示了其在人工智能研究领域的广泛性。

近年来,大语言模型(LLM)和其他基础模型在该领域占据主导地位,亚马逊的论文反映了这一趋势,涵盖检索增强生成、使用LLM进行代码生成、常识推理和多模态模型等主题。训练方法也是备受关注的领域,相关论文涉及了内存高效训练、基于人类反馈的强化学习、拒绝分类以及Transformer模型的收敛速度等。

亚马逊的论文也展示了对多臂老虎机问题(亚马逊长期向NeurIPS提交论文的主要内容)和语音处理等主题的持续关注,还有诸如将机器学习应用于科学计算和自动推理等新领域。un一篇题为《B’MOJO: Hybrid state space realizations of foundation models with eidetic and fading memory》的论文,就提出了一种基于转导学习概念的机器学习新范式。

自动推理

92e905aa64260c31a6b1b0eac6e9ef16.png

论文标题:

Neural model checking

论文作者:

Mirco Giacobbe、Daniel Kroening、Abhinandan Pal、Michael Tautschnig

论文地址:

https://www.amazon.science/publications/neural-model-checking

多臂老虎机问题

a6c3b5bd6fb550169b0581ea249d9e41.png

论文标题:

Adaptive experimentation when you can’t experiment

论文作者:

Yao Zhao、Kwang-Sung Jun、Tanner Fiez、Lalit Jain

论文地址:

https://www.amazon.science/publications/adaptive-experimentation-when-you-cant-experiment

be35e2405177f6c99671b2f096843090.png

论文标题:

Online posterior sampling with a diffusion prior

论文作者:

Branislav Kveton、Boris Oreshkin、Youngsuk Park、Aniket Deshmukh、Rui Song

论文地址:

https://www.amazon.science/publications/online-posterior-sampling-with-a-diffusion-prior

代码生成

77378073ddbc76100d38a1b365c2ef5c.png

论文标题:

Training LLMs to better self-debug and explain code

论文作者:

Nan Jiang、Xiaopeng LI、Shiqi Wang、Qiang Zhou、Baishakhi Ray、Varun Kumar、Xiaofei Ma、Anoop Deoras

论文地址:

https://www.amazon.science/publications/training-llms-to-better-self-debug-and-explain-code

9fdec3c64cd26f8a66bba4784b5797dd.png

上图为论文中提出的数据收集和模型训练框架

常识推理

d78ec14acbd75c93edac31cc11e76ac3.png

论文标题:

Can language models learn to skip steps?

论文作者:

Tengxiao Liu、Qipeng Guo、Xiangkun Hu、Jiayang Cheng、Yue Zhang、Xipeng Qiu、Zheng Zhang

论文地址:

https://www.amazon.science/publications/can-language-models-learn-to-skip-steps

计算流体力学

de4c24931170ec751bf79f80665c0c07.png

论文标题:

WindsorML:High-fidelity computational fluid dynamics dataset for automotive aerodynamics

论文作者:

Neil Ashton、Jordan B. Angel、Aditya S. Ghate、Gaetan K. W. Kenway、Man Long Wong、Cetin Kiris、Astrid Walle、Danielle Maddix Robinson、Gary Page

论文地址:

https://www.amazon.science/publications/windsorml-high-fidelity-computational-fluid-dynamics-dataset-for-automotive-aerodynamics

大语言模型评估

ff09c728469ba6f72d444b92334404dd.png

论文标题:

SetLexSem Challenge:Using set operations to evaluate the lexical and semantic robustness of language models

论文作者:

Bardiya Akhbari、Manish Gawali、Nicholas Dronen

论文地址:

https://www.amazon.science/publications/setlexsem-challenge-using-set-operations-to-evaluate-the-lexical-and-semantic-robustness-of-language-models

3f77c7ed486652ae74668b44fdc85cf1.png

为了评估大语言模型对集合成员语义变化的鲁棒性,亚马逊研究人员及其同事通过对上位词对(例如“哺乳动物”和“车辆”)进行采样,创建了“欺骗性”集合,并从中提取三种不同条件下的下位词:

  • 与抽样的下位词相同;

  • 更换半数成员;

  • 随机抽样。 

LLM在第二个条件(交换)下表现出独特的故障模式,第一个条件(未交换)的准确率均值和方差优于随机基线。上图可在该论文中找到。

内存管理

f0612c9332149b076f1bafaf26a1b53f.png

论文标题:

Online weighted paging with unknown weights

论文作者:

Orin Levy、Aviv Rosenberg、Noam Touitou

论文地址:

https://www.amazon.science/publications/online-weighted-paging-with-unknown-weights

模型架构

29f3980564deb1a3914b7ad0accf454e.png

论文标题:

B’MOJO:Hybrid state space realizations of foundation models with eidetic and fading memory

论文作者:

Luca Zancato、Arjun Seshadri、Yonatan Dukler、Aditya Golatkar、Yantao Shen、Ben Bowman、Matthew Trager、Alessandro Achille、Stefano Soatto

论文地址:

https://www.amazon.science/publications/bmojo-hybrid-state-space-realizations-of-foundation-models-with-eidetic-and-fading-memory

隐私

4e2cbdb0d7d5da5669d413ae10868182.png

论文标题:

Pre-training differentially private models with limited public data

论文作者:

Zhiqi Bu、Xinwei Zhang、Sheng Zha、Mingyi Hong

论文地址:

https://www.amazon.science/publications/pre-training-differentially-private-models-with-limited-public-data

225949654ffe5d15e1a4f379658eadf1.png

论文标题:

Reconstruction attacks on machine unlearning: Simple models are vulnerable

论文作者:

Martin Bertran Lopez、Shuai Tang、Michael Kearns、Jamie Morgenstern、Aaron Roth、Zhiwei Steven Wu

论文地址:

https://www.amazon.science/publications/reconstruction-attacks-on-machine-unlearning-simple-models-are-vulnerable

检索增强生成(RAG)

d59fd188a79d40c8ff3ed056cc6e6f7b.png

论文标题:

RAGChecker:A fine-grained framework for diagnosing retrieval-augmented generation

论文作者:

Dongyu Ru、Lin Qiu、Xiangkun Hu、Tianhang Zhang、Peng Shi、Shuaichen Chang、Cheng Jiayang、Cunxiang Wang、Shichao Sun、Huanyu Li、Zizhao Zhang、Binjie Wang、Jiarong Jiang、Tong He、Zhiguo Wang、Pengfei Liu、Yue Zhang、Zheng Zhang

论文地址:

https://www.amazon.science/publications/ragchecker-a-fine-grained-framework-for-diagnosing-retrieval-augmented-generation

语音处理

3b041a382b75eaabd0f155db855104bc.png

论文标题:

CA-SSLR:Condition-aware self-supervised learning representation for generalized speech processing

论文作者:

Yen-Ju Lu、Jing Liu、Thomas Thebaud、Laureano Moro-Velazquez、Ariya Rastrow、Najim Dehak、Jesus Villalba

论文地址:

https://www.amazon.science/publications/ca-sslr-condition-aware-self-supervised-learning-representation-for-generalized-speech-processing

ba3333e2d0a1d20063577dba3eef2d4c.png

如论文提及,CA-SSLR方案及其时间通道注意力调节器,只有解码器的调节器和线性投影是可训练的,所有其他参数在适应过程中都被冻结。CA-SSLR通过集成中间LID/SV条件、保持预训练参数冻结(左)来改进SSL功能。可训练的时间通道注意力调节器集成了语言和发言人预测(右)。

训练方法

5bf8d715090a18acd82650843322548d.png

论文标题:

CoMERA:Computing- and memory-efficient training via rank-adaptive tensor optimization

论文作者:

Zi Yang、Ziyue Liu、Samridhi Choudhary、Xinfeng Xie、Cao Gao、Siegfried Kunzmann、Zheng Zhang

论文地址:

https://www.amazon.science/publications/comera-computing-and-memory-efficient-training-via-rank-adaptive-tensor-optimization

b10e700e625387cb6ffc282adb919a39.png

论文标题:

Optimal design for human preference elicitation

论文作者:

Subhojyoti Mukherjee、Anusha Lalitha、Kousha Kalantari、Aniket Deshmukh、Ge Liu、Yifei Ma、Branislav Kveton

论文地址:

https://www.amazon.science/publications/optimal-design-for-human-preference-elicitation

04bde09a4448410745bf886c1beb0000.png

论文标题:

Rejection via learning density ratios

论文作者:

Alexander Soen、Hisham Husain、Philip Schulz、Vu Nguyen

论文地址:

https://www.amazon.science/publications/rejection-via-learning-density-ratios

9b85a16fa872669de97704df72ab69e4.png

论文标题:

Unraveling the gradient descent dynamics of transformers

论文作者:

Bingqing Song、Boran Han、Shuai Zhang、Jie Ding、Mingyi Hong

论文地址:

https://www.amazon.science/publications/unraveling-the-gradient-descent-dynamics-of-transformers

视频

26b4317aa23f28e8c8702785643500ef.png

论文标题:

One token to seg them all:Language instructed reasoning segmentation in videos

论文作者:

Zechen Bai、Tong He、Haiyang Mei、Pichao Wang、Ziteng Gao、Joya Chen、Lei Liu、Pichao Wang、Zheng Zhang、Mike Zheng Shou

论文地址:

https://www.amazon.science/publications/one-token-to-seg-them-all-language-instructed-reasoning-segmentation-in-videos

67a308818ebd4441d799dd62562a5583.png

上图即论文中提出的视频对象分割框架

f62fa994ceae8c468ef2dba0e80e8f9d.png

论文标题:

Video token merging for long-form video understanding

论文作者:

Seon Ho Lee、Jue Wang、Zhikang Zhang、David Fan、Xinyu (Arthur) Li

论文地址:

https://www.amazon.science/publications/video-token-merging-for-long-form-video-understanding

视觉语言模型

2940d7b5f5c34190523f1c48c97d2d11.png

论文标题:

Unified lexical representation for interpretable visual-language alignment

论文作者:

Yifan Li、Yikai Wang、Yanwei Fu、Dongyu Ru、Zheng Zhang、Tong He

论文地址:

https://www.amazon.science/publications/unified-lexical-representation-for-interpretable-visual-language-alignment

a434bdcec61e6deb73f6ff6ce7fab2b0.png

4c5440d2758e6ca5c6e0152913126e91.png

07531be98e878d86146388794b2f1cf7.png

f53b711b6fd2fb59b32dad40623f74cd.gif

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

听说,点完下面4个按钮

就不会碰到bug了!

71476a982c4c24542b19d6cb0ebd839c.gif

点击阅读原文查看博客!获得更详细内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值