使用Amazon Bedrock,运行MCP桌面客户端

随着亚马逊云科技对MCP(Model Context Protocol)的支持,许多客户和合作伙伴尝试将MCP与Amazon Bedrock提供的基础模型(如Claude Sonnet 3.7或Amazon Nova Pro)结合使用。

《通过Amazon Bedrock Agents,释放MCP服务器的强大功能》介绍了如何用代码方式,通过Amazon Bedrock的inline agents实现相关功能,而这篇文章则将教您如何用图形化界面(GUI)来搭建和配置基于MCP的工作流程。

在亚马逊云科技服务上运行MCP

亚马逊云科技官方提供的MCP可用Server如下,您可参阅设置指南进行操作。

  • 核心MCP Server:具备MCP Server自动管理功能。

  • Amazon Bedrock知识库检索MCP Server:用于访问Amazon Bedrock知识库。

  • Amazon Web Services CDK MCP Server:用于Amazon Web Services CDK项目分析与辅助。

  • 成本分析MCP Server:用于亚马逊云科技服务成本分析。

  • Amazon Nova Canvas MCP Server:用于借助Amazon Nova Canvas生成图像。

设置指南:

https://github.com/awslabs/mcp/tree/main

为何需要桌面客户端?

MCP桌面客户端提供了基于GUI的接口,使用户无需编写代码即可在本地设置MCP工具或第三方工具。

目前有多种桌面客户端可供选择,其中最受欢迎的是Claude桌面客户端,但其局限性在于不支持用户选择Amazon Bedrock提供的模型,也无法与Amazon Bedrock进行交互。除此之外,还有Goose、Cursor、5ire等多种开源客户端可供使用。本文将使用Goose来连接Amazon Bedrock上的模型。

您可参阅下方链接,了解其他可用的MCP客户端详细列表。

可用MCP客户端详细列表:

https://modelcontextprotocol.io/clients

按照以下步骤开始操作。

1.安装Goose:这是一款开源的MCP桌面客户端,当然您也可以选择其他可用的MCP桌面客户端进行安装。

2.设置Amazon CLI:将区域设置为US-east-1,并添加您的配置文件(注意请勿使用Goose配置方式),您可以参阅下方链接说明来设置Amazon CLI。

3.将Amazon Bedrock设置为模型提供者:为此您需要准备Amazon_Profile,具体设置方法参阅下方链接(注意请勿使用Goose Configure来配置Amazon Bedrock上的模型)。

4.选择Amazon Bedrock作为模型提供者,并添加模型ID,例如:

  • amazon.nova-pro-v1:0——适用于Amazon Nova。

  • us.anthropic.claude-3-7-sonnet-20250219-v1:0——适用于Claude Sonnet 3.7。

当然您也可以选择Amazon Bedrock提供的其他任何模型。

Amazon CLI设置说明:

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html

Amazon Bedrock作为模型提供者的设置说明:

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html

通过上述步骤,您就可以在桌面客户端中运行Amazon Bedrock中的模型,并可以根据需要在不同模型之间切换。

在Amazon Bedrock中的模型间切换

接下来,就可以开始设置MCP工具,点击“添加扩展”。

添加MCP Server

您可以从github中,根据具体工作流或应用场景来选择合适的MCP Server。目前,可供选择的MCP Server有100多种,其中包括亚马逊云科技MCP Server仓库。

您可以尝试添加Slack、pgvector、顺序推理等更多实用功能。本例将演示如何添加顺序思考功能,即为您的本地客户端赋予深度思考能力。

访问官方的MCP Server仓库,并选择文件系统MCP Server。然后按照readme.md文件中的说明进行操作,并参考Claude桌面设置指南(步骤与下方示例类似)。

该设置与Claude桌面设置不同的是,您只需执行相应的命令即可。下文将向您展示如何在Goose上提取并执行添加MCP命令。

访问官方MCP Server仓库:

https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem

{  "mcpServers": {    "filesystem": {      "command": "npx",      "args": [        "-y",        "@modelcontextprotocol/server-filesystem",        "/Users/username/Desktop",        "/path/to/other/allowed/dir"      ]    }  }}

左右滑动查看完整示意

npx -y @modelcontextprotocol/server-filesystem /Users/username/Desktop

左右滑动查看完整示意

前往“设置”,点击“添加自定义扩展”,并填写以下信息。

  • ID:filesystem

  • 名称:filesystem

  • 描述:用于文件系统操作的MCP

然后在“命令”一栏中,使用刚才提取的命令,点击“添加”后,第一个MCP设置完成。

添加自定义MCP Server

现在进行测试。打开一个新的会话,在Amazon Nova Pro和Claude 3.7 Sonnet之间进行切换,以测试Amazon Bedrock中的模型是否已成功连接,并输入测试提示词,示例如下。

测试MCP工具

至此,您已借助Amazon Bedrock完成了基于MCP的Agent搭建工作。

资源链接

您可参阅下方链接,尝试设置亚马逊云科技MCP Server。如尝试添加亚马逊云科技服务成本分析器MCP,以拥有专属的亚马逊云科技服务成本分析Agent,或设置Amazon Nova Canvas MCP,使用Amazon Nova Canvas生成引人入胜的图像。

MCP:

https://modelcontextprotocol.io/introduction

通过Amazon Bedrock Agents运行MCP:

https://aws.amazon.com/blogs/machine-learning/harness-the-power-of-mcp-servers-with-amazon-bedrock-agents/

亚马逊云科技MCP可用Server列表(请按照此处设置指南进行操作):

https://github.com/awslabs/mcp/tree/main

本文作者Ninad Joshi

EMEA地区的生成式AI合作伙伴解决方案架构师,致力于帮助亚马逊云科技合作伙伴构建并扩展生成式AI工作负载。作为一位生成式AI专家,Ninad拥有丰富的人工智能与机器学习经历,曾与咨询公司、初创企业以及不同行业领域的企业客户合作。

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

听说,点完下面4个按钮

就不会碰到bug了!

点击阅读原文查看博客!获得更详细内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值