随着亚马逊云科技对MCP(Model Context Protocol)的支持,许多客户和合作伙伴尝试将MCP与Amazon Bedrock提供的基础模型(如Claude Sonnet 3.7或Amazon Nova Pro)结合使用。
《通过Amazon Bedrock Agents,释放MCP服务器的强大功能》介绍了如何用代码方式,通过Amazon Bedrock的inline agents实现相关功能,而这篇文章则将教您如何用图形化界面(GUI)来搭建和配置基于MCP的工作流程。
在亚马逊云科技服务上运行MCP
亚马逊云科技官方提供的MCP可用Server如下,您可参阅设置指南进行操作。
核心MCP Server:具备MCP Server自动管理功能。
Amazon Bedrock知识库检索MCP Server:用于访问Amazon Bedrock知识库。
Amazon Web Services CDK MCP Server:用于Amazon Web Services CDK项目分析与辅助。
成本分析MCP Server:用于亚马逊云科技服务成本分析。
Amazon Nova Canvas MCP Server:用于借助Amazon Nova Canvas生成图像。
设置指南:
https://github.com/awslabs/mcp/tree/main
为何需要桌面客户端?
MCP桌面客户端提供了基于GUI的接口,使用户无需编写代码即可在本地设置MCP工具或第三方工具。
目前有多种桌面客户端可供选择,其中最受欢迎的是Claude桌面客户端,但其局限性在于不支持用户选择Amazon Bedrock提供的模型,也无法与Amazon Bedrock进行交互。除此之外,还有Goose、Cursor、5ire等多种开源客户端可供使用。本文将使用Goose来连接Amazon Bedrock上的模型。
您可参阅下方链接,了解其他可用的MCP客户端详细列表。
可用MCP客户端详细列表:
https://modelcontextprotocol.io/clients
按照以下步骤开始操作。
1.安装Goose:这是一款开源的MCP桌面客户端,当然您也可以选择其他可用的MCP桌面客户端进行安装。
2.设置Amazon CLI:将区域设置为US-east-1,并添加您的配置文件(注意请勿使用Goose配置方式),您可以参阅下方链接说明来设置Amazon CLI。
3.将Amazon Bedrock设置为模型提供者:为此您需要准备Amazon_Profile,具体设置方法参阅下方链接(注意请勿使用Goose Configure来配置Amazon Bedrock上的模型)。
4.选择Amazon Bedrock作为模型提供者,并添加模型ID,例如:
amazon.nova-pro-v1:0——适用于Amazon Nova。
us.anthropic.claude-3-7-sonnet-20250219-v1:0——适用于Claude Sonnet 3.7。
当然您也可以选择Amazon Bedrock提供的其他任何模型。
Amazon CLI设置说明:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
Amazon Bedrock作为模型提供者的设置说明:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
通过上述步骤,您就可以在桌面客户端中运行Amazon Bedrock中的模型,并可以根据需要在不同模型之间切换。
在Amazon Bedrock中的模型间切换
接下来,就可以开始设置MCP工具,点击“添加扩展”。
添加MCP Server
您可以从github中,根据具体工作流或应用场景来选择合适的MCP Server。目前,可供选择的MCP Server有100多种,其中包括亚马逊云科技MCP Server仓库。
您可以尝试添加Slack、pgvector、顺序推理等更多实用功能。本例将演示如何添加顺序思考功能,即为您的本地客户端赋予深度思考能力。
访问官方的MCP Server仓库,并选择文件系统MCP Server。然后按照readme.md文件中的说明进行操作,并参考Claude桌面设置指南(步骤与下方示例类似)。
该设置与Claude桌面设置不同的是,您只需执行相应的命令即可。下文将向您展示如何在Goose上提取并执行添加MCP命令。
访问官方MCP Server仓库:
https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
{ "mcpServers": { "filesystem": { "command": "npx", "args": [ "-y", "@modelcontextprotocol/server-filesystem", "/Users/username/Desktop", "/path/to/other/allowed/dir" ] } }}
左右滑动查看完整示意
npx -y @modelcontextprotocol/server-filesystem /Users/username/Desktop
左右滑动查看完整示意
前往“设置”,点击“添加自定义扩展”,并填写以下信息。
ID:filesystem
名称:filesystem
描述:用于文件系统操作的MCP
然后在“命令”一栏中,使用刚才提取的命令,点击“添加”后,第一个MCP设置完成。
添加自定义MCP Server
现在进行测试。打开一个新的会话,在Amazon Nova Pro和Claude 3.7 Sonnet之间进行切换,以测试Amazon Bedrock中的模型是否已成功连接,并输入测试提示词,示例如下。
测试MCP工具
至此,您已借助Amazon Bedrock完成了基于MCP的Agent搭建工作。
资源链接
您可参阅下方链接,尝试设置亚马逊云科技MCP Server。如尝试添加亚马逊云科技服务成本分析器MCP,以拥有专属的亚马逊云科技服务成本分析Agent,或设置Amazon Nova Canvas MCP,使用Amazon Nova Canvas生成引人入胜的图像。
MCP:
https://modelcontextprotocol.io/introduction
通过Amazon Bedrock Agents运行MCP:
https://aws.amazon.com/blogs/machine-learning/harness-the-power-of-mcp-servers-with-amazon-bedrock-agents/
亚马逊云科技MCP可用Server列表(请按照此处设置指南进行操作):
https://github.com/awslabs/mcp/tree/main
本文作者Ninad Joshi
EMEA地区的生成式AI合作伙伴解决方案架构师,致力于帮助亚马逊云科技合作伙伴构建并扩展生成式AI工作负载。作为一位生成式AI专家,Ninad拥有丰富的人工智能与机器学习经历,曾与咨询公司、初创企业以及不同行业领域的企业客户合作。
星标不迷路,开发更极速!
关注后记得星标「亚马逊云开发者」
听说,点完下面4个按钮
就不会碰到bug了!
点击阅读原文查看博客!获得更详细内容!