数据、分析与人工智能的集成中心,提供一体式体验

亚马逊云科技推出新一代Amazon SageMaker,这是一项集数据、分析和人工智能于一体的统一服务。全新的Amazon SageMaker几乎涵盖数据探索、准备和集成、大数据处理、快速SQL分析、机器学习模型开发与训练以及生成式AI应用开发所需的所有组件。

Amazon SageMaker现已更名为Amazon SageMaker AI,其集成在新一代Amazon SageMaker中,同时也可作为一项独立服务,以供专注于大规模构建、训练和部署人工智能与机器学习模型的用户使用。

新一代Amazon SageMaker功能亮点

新一代Amazon SageMaker核心是Amazon SageMaker Unified Studio(预览版),这是一个集成的数据和AI开发环境,集成了Amazon Athena、Amazon EMR、Amazon Glue、Amazon Redshift、Amazon MWAA以及现有Amazon SageMaker Studio中提供的各种独立 “工作室”、查询编辑器和可视化工具的功能和工具。并且还集成了Amazon Bedrock Studio的更新版本——Amazon Bedrock IDE(预览版),用于构建和定制生成式AI应用程序。此外,Amazon Q还可在Amazon SageMaker的整个工作流程中提供AI辅助。

其关键功能如下:

  • Amazon SageMaker Unified Studio(预览版):在单一环境中,使用所有数据和工具进行分析和AI应用构建。

  • Amazon SageMaker Lakehouse:通过Amazon SageMaker Lakehouse,访问Amazon S3数据湖、Amazon Redshift数据仓库以及第三方和联合数据来源中的统一数据。

  • 数据和AI治理:利用基于Amazon DataZone构建的Amazon SageMaker Catalog,安全地发现、治理和协作处理数据和AI。

  • 数据处理:使用Amazon Athena、Amazon EMR和Amazon Glue上的开源框架,分析、准备和集成用于分析和AI构建的数据。

  • 模型开发:借助Amazon SageMaker AI的完全托管基础设施、工具和工作流,构建、训练和部署机器学习模型和基础模型(FM)。

  • 生成式AI应用开发:利用Amazon Bedrock构建和扩展生成式AI应用程序。

  • SQL分析:利用极具性价比的SQL引擎Amazon Redshift,获取见解。

本文将带您快速了解全新的Amazon SageMaker Unified Studio体验,以及如何进行数据处理、模型开发和生成式AI应用开发。

使用Amazon SageMaker

Unified Studio(预览版)

通过Amazon SageMaker Unified Studio,您可以在单一受管理环境中发现数据并利用其开展工作,使用熟悉的亚马逊云科技工具完成端到端的开发工作流程,包括数据分析、数据处理、模型训练和生成式AI应用构建。

集成的SQL编辑器允许您查询多个数据源的数据,可视化的提取、转换和加载(ETL)工具则简化了数据集成和转换工作流的创建。新的统一Jupyter笔记本支持在不同计算服务和集群之间无缝工作。借助新的内置数据目录功能,您可以在整个组织内查找、访问和查询数据和人工智能资产。Amazon Q的集成,则简化了开发生命周期中的各项任务。

下文将详细介绍各项功能。

数据处理

Amazon SageMaker与Amazon SageMaker Lakehouse集成,为您在分析、准备、集成和协调数据方面提供统一体验,您可以使用提供的连接选项,集成和处理各种来源的数据。

首先,在Amazon SageMaker Unified Studio中创建一个项目,选择SQL分析或数据分析和人工智能—机器学习模型开发项目配置文件,该项目是与同事协作、共享数据以及使用工具安全处理数据的场所。Amazon SageMaker中的项目配置文件定义了创建新项目时预置的资源和工具集。在项目中,选择左侧菜单中的“数据”,然后开始添加数据源。

通过内置的SQL查询编辑器,您可直接在Amazon SageMaker Unified Studio中查询存储在数据湖、数据仓库、数据库和应用程序中的数据。在Amazon SageMaker Unified Studio的顶部菜单中,选择“构建”并选择“查询编辑器”,即可开始使用。此外,您也可以尝试借助Amazon Q使用自然语言创建SQL查询。

您还可以探索内置的可视化ETL工具,其支持您使用可视化拖放界面创建数据集成和转换工作流。在顶部菜单中,选择“构建”,然后选择“可视化ETL流程”,即可开始操作。

如果已启用Amazon Q,您还可以使用生成式AI来编写流程。Amazon Glue Studio Visual ETL具有全面的数据连接器、预置转换以及调度、监控和数据预览等功能,可简化数据工作流。

模型开发

Amazon SageMaker Unified Studio集成了Amazon SageMaker AI的功能,后者为整个机器学习生命周期提供基础架构、工具和工作流程。在顶部菜单中选择“构建”,即可访问用于数据准备、模型训练、实验跟踪、管道创建和编排的工具。您还可以使用这些工具进行模型部署和推理、机器学习操作(MLOps)实施、模型监控和评估以及治理和合规性操作。

要开始模型开发,请在Amazon SageMaker Unified Studio中,使用数据分析和人工智能—机器学习模型开发项目配置文件创建一个项目,并探索新的统一Jupyter笔记本。在顶部菜单中选择“构建”,然后选择“JupyterLab”。您可以使用新的统一Jupyter笔记本在不同的计算服务和集群间无缝工作,Jupyter笔记本支持您无需离开工作区,即可在不同环境间切换,从而简化模型开发流程。

在模型开发过程中,您还可以使用Amazon Q Developer辅助完成代码生成、调试和优化等任务。

生成式AI应用开发

使用新的Amazon Bedrock IDE,在Amazon SageMaker Unified Studio中开发生成式AI应用程序。Amazon Bedrock IDE包含一系列工具,您可使用基础模型(FM)高级功能(如Amazon Bedrock知识库、Amazon Bedrock Guardrails、Amazon Bedrock Agents和Amazon Bedrock Flows),来构建和定制生成式AI应用程序,从而创建符合您的需求和负责任的AI策略的个性化解决方案。

在Amazon SageMaker Unified Studio顶部菜单中选择“发现”,以浏览Amazon Bedrock模型或在模型playgrounds中进行试验。

使用生成式AI应用程序开发配置文件创建一个项目,开始构建生成式AI应用程序。在Amazon SageMaker Unified Studio顶部菜单中选择“构建”,然后选择“聊天Agent”。

借用Amazon Bedrock IDE,您只需几次点击,即可从专有数据源构建聊天Agent以及创建知识库,从而实现检索增强生成(RAG)。您可以添加防护机制以促进安全的AI交互,并创建函数以与任何系统集成。借助内置的模型评估功能,您可以在与团队协作的同时,测试和优化AI应用程序的性能。设计由确定性生成式AI驱动的工作流,准备就绪后,在域内共享您的应用程序或提示,或将其导出以部署至任何地方,所有这些操作都在您对项目和域资产保持控制的情况下进行。

有关Amazon SageMaker所有功能的详细说明,请参阅《Amazon SageMaker Unified Studio用户指南》。

《Amazon SageMaker Unified Studio用户指南》

https://docs.aws.amazon.com/sagemaker-unified-studio/latest/userguide/what-is-sagemaker-unified-studio.html

开始使用

要开始使用Amazon SageMaker Unified Studio,管理员需要完成几个设置步骤,包括设置Amazon IAM Identity Center、配置必要的虚拟私有云(VPC)和Amazon IAM角色、创建Amazon SageMaker域以及启用Amazon Q Developer Pro。

除了使用Amazon IAM Identity Center外,您还可以通过Amazon IAM联合身份验证配置SAML进行用户管理。

Amazon IAM Identity Center:

https://aws.amazon.com/iam/identity-center/

Amazon IAM:

https://aws.amazon.com/iam/

环境配置完成后,用户可通过提供的Amazon SageMaker Unified Studio域URL以单点登录方式登录,您可以创建项目与团队成员协作,并根据不同用例从预配置的项目配置文件中进行选择。每个项目都连接到Git存储库进行版本控制,并包含一个统一的Jupyter笔记本示例,帮助您快速上手使用。

有关详细设置说明,请参阅《Amazon SageMaker Unified Studio管理员指南》。

《Amazon SageMaker Unified Studio管理员指南》

https://docs.aws.amazon.com/sagemaker-unified-studio/latest/adminguide/what-is-service.html

现已可用

新一代Amazon SageMaker现已在美国东部(北弗吉尼亚州、俄亥俄州)、美国西部(俄勒冈州)、亚太地区(东京)和欧洲(爱尔兰)亚马逊云科技区域可用,Amazon SageMaker Unified Studio和Amazon Bedrock IDE目前在这些亚马逊云科技区域提供预览版。有关未来更新信息,请参阅完整区域列表。

有关定价信息,请参阅Amazon SageMaker定价页面和Amazon Bedrock定价页面。更多详细信息,请参阅Amazon SageMaker、Amazon SageMaker Unified Studio和Amazon Bedrock IDE产品页面。

若要体验Amazon Bedrock IDE的高级功能,请按照《管理员指南》中的说明创建新的Amazon SageMaker域。

您可在控制台中,立即体验新一代Amazon SageMaker。

完整区域列表:

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon SageMaker定价:

https://aws.amazon.com/sagemaker/pricing/

Amazon Bedrock定价:

https://aws.amazon.com/bedrock/pricing/

Amazon SageMaker:

https://aws.amazon.com/sagemaker/

Amazon SageMaker Unified Studio:

https://aws.amazon.com/sagemaker/unified-studio

Amazon Bedrock IDE:

https://aws.amazon.com/bedrock/ide

《管理员指南》

https://docs.aws.amazon.com/sagemaker-unified-studio/latest/adminguide/what-is-service.html

控制台:

https://console.aws.amazon.com/datazone

本篇作者

Antje Barth

亚马逊云科技生成式AI首席开发者布道师

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

听说,点完下面4个按钮

就不会碰到bug了!

点击阅读原文查看博客!获得更详细内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值