pytorch 使用 torch.optim.LBFGS() 优化神经网络

pytorch的优化器中,如果我们直接像调用其他优化器一样调用LBFGS,如下形式:

criterion = nn.MSELoss()
optimizer = torch.optim.LBFGS(params=densenet2.parameters(), lr=1e-5)
dataset = DataLoader(dataset = data_gen,
                     batch_size = 32,
                     shuffle=True)
epochs = 50
for epoch in tqdm(range(epochs)):
    for data in dataset:
        optimizer.zero_grad()
        input, output = data
        pred_output = densenet2(input)
        loss = criterion(pred_output, output)
        optimizer.step()

那么会得到这个报错:

TypeError: LBFGS.step() missing 1 required positional argument: 'closure'

 因为这个优化器的调用语法和一般的不太一样,需要传递一个闭包参数,可以以如下形式写:

def closure():
    pred_output = densenet2(input)
    loss = criterion(pred_output, output)
    # print("batch loss: {:.9f}".format(loss.item()))
    loss.backward()
    return loss
optimizer.step(closure=closure)

然后就可以使用LBFGS进行优化啦。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值