1、二叉树的递归:先序,中序,后序遍历
//树的结构定义
struct TreeNode{
int data;
struct TreeNode *lchild,*rchild;
};
void PreOrder(TreeNode *T){
if(T){
cout<<T->data<<endl;//先序遍历
PreOrder(T->lchild);
PreOrder(T->rchild);
}
}
void MidOrder(TreeNode *T){
if(T){
MidOrder(T->lchild);
cout<<T->data<<endl;//中序遍历
MidOrder(T->rchild);
}
}
void PstOrder(TreeNode *T){
if(T){
PstOrder(T->lchild);
PstOrder(T->rchild);
cout<<T->data<<endl;//后序遍历
}
}
非递归方式,先序遍历,中序遍历,后序遍历
- 1)访问结点P,并将结点P入栈;
2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);
若不为空,则将P的左孩子置为当前的结点P;
3)直到P为NULL并且栈为空,则遍历结束。
//先序遍历
void preOrder(TreeNode *root){
stack<TreeNode*>s;
TreeNode* p=root;
while(p!=NULL||!s.empty()){
while(p!=NULL){
cout<<p->data<<"";
s.push(p);
p=p->lchild;
}
while(!s.empty()){
p=s.top();
s.pop();
p=p->rchild;
}
}
}
//中序遍历
void midOrder(TreeNode *root){
stack<TreeNode*>s;
TreeNode* p=root;
while(p!=NULL||!s.empty()){
while(p!=NULL){
s.push(p);
p=p->lchild;
}
while(!s.empty()){
p=s.top();
cout<<p->data<<"";
s.pop();
p=p->rchild;
}
}
}
//后序遍历
- 要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,
先将其入栈。1、如果P不存在左孩子和右孩子,则可以直接访问它;2、或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。//若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了 每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。
void postOrder(TreeNode* root){
stack<TreeNode*>s;
TreeNode* cur;
TreeNode* pre=NULL;
s.push(root);
while(!s.empty()){
cur=s.top();
if((cur->lchild==NULL && cur->rchild==NULL)||
(pre!=NULL &&(pre==cur->lchild || pre==cur->rchild))){
cout<<cur->data<<"";
s.pop();
pre=cur;
}else{
if(cur->rchild!=NULL)
s.push(cur->rchild);
if(cur->lchild!=NULL)
s.push(cur->lchild);
}
}
}
2、二叉树的深度优先遍历,广度优先遍历
//利用栈,先将右子树压栈再将左子树压栈
深度优先遍历:利用栈
void DepthFirstSearch(TreeNode* root){
stack<TreeNode*>nodeStack;
nodeStack.push(root);
while(!nodeStack.empty()){
TreeNode* node = nodeStack.top();
cout<<node->data<<"";
nodeStack.pop();
if(node->right)
nodeStack.push(node->right);
if(node->left)
nodeStack.push(node->left);
}
}
广度优先遍历: 队列
void BreadthFirstSearch(TreeNode* root){
queue<TreeNode*>nodeQueue;
nodeQueue.push(root);
while(!nodeQueue.empty()){
TreeNode* node = nodeQueue.front();
cout<<node->data<<"";
nodeQueue.pop();
if(node->left)
nodeQueue.push(node->left);
if(node->right)
nodeQueue.push(node->right);
}
}