U-net:运行你的第一个U-net进行图像分割

本文详述如何使用U-net进行图像分割,包括数据准备、环境配置、网络运行及测试结果分析。通过Python3.5和Tensorflow 1.4.0实现,提供数据下载链接和源码地址。实验显示,使用原始数据训练得到约87%的准确率,而采用数据增强后效果更优。
摘要由CSDN通过智能技术生成

Unet进行图像分割

注意:本文运行环境为:python3.5、tensorflow 1.4.0

数据准备

  • 原始数据:首先准备数据,参考数据来自于 ISBI 挑战的数据集。数据可以在 这里 下载到,含30张训练图、30张对应的标签。30张测试图片,均为.tif 格式文件。
  • 增强后的数据 :谷歌云盘

以上数据二选一就行

程序准备

程序地址:这里
程序含有2个文件,一个文件为data.py :该文件是用来将训练数据转化为.npy 格式文件,便于网络使用数据。当然还有其他功能如数据增强等,程序中已经进行了解释。另外一个文件:unet.py :该文件为unet网络结构定义与测试代码。

  • 运行前的文件夹结构
-
评论 323
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值