树上问题——树形dp

树和dp大家都知道是什么东西,那树形dp呢?

这次以例题的方式是来说说树形dp,注意,我们这里不仅仅是只指二叉树了,还包括——

一.多叉树储存:1.可以用vector写一个二维数组,实现邻接表

                           2.用数组,代码如下

struct T{

int u;//父亲

int v;//儿子

int nxt;//下一个儿子位置

}

void add(int u,int v){//u->v建边

  e[++tot].u=u;

  e[tot].v=v;

  e[tot].nxt=h[u];

  h[u]=tot;

}

for(int i=h[u];i>0;i=e[i].next){//找儿子

  int v=e[i].v;//u的儿子

  ......

二、树形dp

         1.void dfs(int u,int dep,int fa){//这是预处理节点深度和子树节点个数(或权值和)的常用代码

          d[u]=dep;

           siz[u]=1;//sum[u]=a[u];

          for(int i=h[u];i>0;i=e[i].nxt){

          int v=e[i].v;

          if(v==fa)continue;

          dfs(v,dep+1,u);

          siz[u]+=siz[v]; //sum[u]+=sum[u];

                  }

                }

        2.无根树转有根树:

#include<cstdio>

#include<iostream>

using namespace std;

const int maxn=1e6+10;

struct Edge{int v,w;};

vector<Edge>g[maxn];

int p[maxn];

void dfs(int u,int fa){

        int k=g[u].size();

        for(int i=0;i<k;i++){

                int v=g[u][i].v,w=g[u][i].w;

                if(v=fa)dfs(v,p[v]=u);

        }

}

int main(){

cin>>n;

for(int i=1;i<n;i++){

int u,v,w;

cin>>u>>v>>w;

g[u].push_back((Edge){v,w});

g[v].push_back((Edge){u,w});

}

memset(p,-1,sizeof(p));

dfs(0,-1);

return 0;

}

        3.二次扫描与换根法:

        替换枚举树根

        第一次dfs1:一般上自下而上求出节点u代表子树的信息。

u子树节点数量。

        第二次dfs2:一般根据第一次dfs1得出的u子树信息,自上而下求出目标信息。如u的深度(根为0),根到u的距离。

4.例题:

战略游戏 - 洛谷

Tree Painting - 洛谷

给大家放两道例题,战略游戏是树形dp,第二题用到二次扫描与换根法,大家先自己做一下

--------------------------------------------下面是题解----------------------------------------------------------------------

T1:关键代码
void dfs(int u,int fa)
{
    f[u][1] = 1;
    f[u][0] = 0;
    int k = son[u].size();
    for (int i = 0; i < k; i++)
    {
        int v = son[u][i];
        if (v == fa)
            continue;
        dfs(v,u);
        f[u][0]+=f[v][1];
        f[u][1]+=min(f[v][0],f[v][1]);//决策转移
    }
}

    dfs(1,0);
    int ans = min(f[1][0],f[1][1]);

T2:关键代码
void dp(int u,int fa){
    siz[u]=1;
    g[u]=1;
    int k=son[u].size();
    for(int i=0;i<k;i++){
        int v=son[u][i];
        if(v==fa)continue;
        dp(v,u);
        siz[u]+=siz[v];
        g[u]+=g[v]+siz[v];
    }
}
void dfs(int u,int fa){
    int k=son[u].size();
    for(int i=0;i<k;i++){
        int v=son[u][i];
        if(v==fa)continue;
        f[v]=f[u]+siz[1]-2*siz[v];
        dfs(v,u);
    }
}

    dp(1,0);
    f[1]=g[1];
    dfs(1,0);
    long long ans=0,t=0;//一定要开long long啊啊啊啊啊啊啊
    for(int i=1;i<=n;i++)if(f[i]>ans)ans=f[i],t=i;
注意以上2题都是无根树。。。

这篇文章就结束了,有兴趣的大佬神犇们可以去看一下

【模板】点分治 1 - 洛谷               和                        树 - 洛谷

再见ヾ( ̄▽ ̄)Bye~Bye~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值