树形dp——换根dp

 引入 STA-Station

        首先我们先看这样一道例题,根据我们之前学的树形dp基础,于是我们有如下做法

        我们假设某个节点为根,将无根树化为有根树,在搜索dfs统计子树的深度和,则可以用一次搜索算出以该节点为根时的深度和,其时间复杂度为 O(n)

        但这样求解出的答案只是以该节点为根的,并不是最优解。

        如果要暴力求解出最优解,则我们可以枚举所有的节点为根,然后分别跑一次搜索,这样的时间复杂度会达到O(n^2),显然不可接受。

        于是我们引入今天的换根dp

换根dp

         什么是换根dp呢,如其名,就是将不是根的换成根,也就是把该树的子节点变成根。

        我们先定义dp[u]表示以u为根的所有子节点的深度之和。

        我们注意到,如果我们求出了某个dp[root],其中root表示该树的根,那么对于root的任意一个孩子节点child,dp[child]是可以通过O(1)时间求出来的。换根之后有什么变化,为什么可以通过O(1)求出呢,我们通过一个图更加清晰的理解。

               

     如图,我们的根节点就是0,接下来我们选取子节点2作为新的根节点,对其进行换根

          接下来我们来看一下有哪些变化,很明显的变化就是有地方下沉了,也就是深度减小了。

         通过观察,我们发现,右边的深度减少了,左边的增加了,减少的节点为未换根之前以0为根节点经过2的所有路径上的节点,增加的为没有经过2的。且增减度为1。

        于是我们有如下 (num[i]表示以i为根的子树包含的总节点数量)

dp[child]=dp[root] - num[child] + (n - num[child])

        其中

               num[child]     表示以child为根节点的节点总数,因为顺着child往下的子节点的深度会减少1,于是- num[child]就表示深度的减少量

                n - num[child]     就表示为上升的深度,不经过child的子节点树都增加,不经过的节点数目就是从节点数目减去经过的节点数目。

代码实现

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;//开ll 会爆
const int N=1e6+10;
ll e[N*2],ne[N*2],dp[N];int h[N],idx;
int dep[N],sum[N];//dep[u],表示u节点的深度,usm[u]表示节点数
int n;

void add(int a,int b)
{
	e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}


//先跑出以u为根节点的深度总和
void dfs(int u,int fa)
{
	dep[u]=dep[fa]+1;//u是往父节点下去的,于是深度就比父节点大1
	sum[u]=1;//最开始只有u自己这个节点
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		dfs(v,u);
		sum[u]+=sum[v];
	}
}

//利用换根
void dfs2(int u,int fa)
{
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		dp[v]=dp[u]+n-2*sum[v];//u是父节点,v是要换根的子节点不要对用错了
		dfs2(v,u);
	}
}

int main()
{
	memset(h,-1,sizeof h);
	cin>>n;
	for(int i=1;i<n;i++)
	{
		int a,b;cin>>a>>b;
		add(a,b),add(b,a);
	}
	dfs(1,0);
	for(int i=1;i<=n;i++)
		dp[1]+=dep[i];//初始化dp[1]
	dfs2(1,0);
	ll ans=0,p=0;//p记录哪个节点最大
	for(int i=1;i<=n;i++)
		if(ans<dp[i])
			ans=dp[i],p=i;
			
	cout<<p<<"\n";
	return 0;	
}

例题

1Choosing Capital for Treeland

分析

       本题的意思就是给一个有向树,求树上哪个节点到其他所有点需要重新建反向边的边数最少。题中出现了哪个节点,要对这个信息敏感,很可能是换根dp。我们可以先任选一个节点当作根节点(这里我选择了节点1),然后遍历dfs,求出 f[1],即节点1到其他所有点需要重新建反向边的边数。

      注意题目这里说的是单向边,而且需要反向建边的操作,我们想一下是都还可以建双向边

       于是不妨设正向边的权重为0,表示可以直接通行不需要建边,

       设反向边的权值为1,表示不能直接通行,需要建边,设置了权值,当我们走了这条边就相当于反向建这条边这个过程。

        于是我们可以通过跑一遍dfs,得到了以u为根节点所需要建立的反向边的数量。

        接下来我们对其进行换根处理。我们先思考一下换根之后之后的变化与什么有关,当然题目问的是反向边,自然与反向边有关了。

        接下来我们考虑两种情况,首先是根节点u能到达要换根的v号节点,也就是不需要建立反向边,如下图,其中红色表示根节点,蓝色表示要换根的节点

此时需要建立一条4到24到3的边才能符合题意,接下来我们看一下换根之后的变化

        我们会发现,原本1能到4,但是换根之后,也就是1沉下去之后反而不能到达了,于是我们需要建立多建立一条边,这时候是4到2,4到1,4到3

        于是我们便有了我们换根后的第一个状态转移,假设u为根节点,为预要换根的节点

f[v]=f[u]+1     (u\rightarrow v)

           接下来我们分析另外一种情况,根节点u不能到达要换根的v号节点,也就是需要建立反向边

相同于上述方法,我们分析可得到

f[v]=f[u]-1   (v\rightarrow u) 

代码

//f[u]表示以u为根节点,需要建立的反向边的数量
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=2e5+10;
ll e[N*2],ne[N*2],w[N*2];
int h[N],idx;
int f[N],ans=1e9;

void add(int a,int b,int c)
{
	e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

//先进行第一遍遍历,找出以u为根所需要建立的反向边的条数
void dfs(int u,int fa)
{
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		dfs(v,u);
		f[u]+=(f[v]+w[i]);
		
	}
}

//进行换根操作
void dfs2(int u,int fa)
{
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		if(w[i])//有反向边的时候也就是v->u
			f[v]=f[u]-1;
		else//u->v
			f[v]=f[u]+1;
		dfs2(v,u);
	}
}

int main()
{
	memset(h,-1,sizeof h);
	int n;cin>>n;
	for(int i=1;i<n;i++)
	{
		int a,b;cin>>a>>b;
		add(a,b,0),add(b,a,1);//正向边的权值为0,需要建立的反向边权值为1
	}
	dfs(1,0);
	int res=f[1];
	dfs2(1,0);
	for(int i=1;i<=n;i++)
		ans=min(ans,f[i]);
	cout<<ans<<"\n";
	for(int i=1;i<=n;i++)
		if(ans==f[i])
		cout<<i<<" ";
	return 0;
}

Great Cow Gathering G

就不做分析了,参考上面,只是多了个点权和边权

代码 

//设f[u]表示以u为根,所有奶牛走过来的距离之和
//f[u]=f[v]+size[v]*w[i];
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1e6+10;
typedef long long ll;
ll e[N*2],ne[N*2],cnt[N],sum;//cnt[u]表示u的子节点加起来一共有多少头牛
ll w[N],h[N],idx;
ll s[N],f[N];
int n;

void add(int a,int b,int c)
{
	e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

void dfs(int u,int fa)
{
	cnt[u]=s[u];//先初始化只有自己节点的牛
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		dfs(v,u);
		cnt[u]+=cnt[v];
		f[u]+=f[v]+w[i]*cnt[v];
		//cout<<f[u]<<"  ";
	}
}
//换根
void dfs2(int u,int fa)
{
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		f[v]=f[u]+(sum-2*cnt[v])*w[i];
		dfs2(v,u);
	}
}


int main()
{
	memset(h,-1,sizeof h);
	cin>>n;
	for(int i=1;i<=n;i++)
		cin>>s[i],sum+=s[i];
	for(int i=1;i<n;i++)
	{
		int a,b,c;cin>>a>>b>>c;
		add(a,b,c),add(b,a,c);
	}
	dfs(1,0);
	dfs2(1,0);
	ll ans=1e18;//此题数据挺歹毒的,不要开小了
	for(int i=1;i<=n;i++)
		ans=min(ans,f[i]);
		
	cout<<ans;
	return 0;
}

Nearby Cows G

分析

        题目要求我们求的是,对于每个节点求出距离它不超过 k 的所有节点权值和

        既然是求距离小于等于k的点权和,那我们便可以依次把0-k 的每一个距离的点权都给算出来,最后再相加即可。于是我们便可以定义我们的状态方程为,f[u][k]表示为距离节点u距离为k的点权。

     至于更新方式,那就是经过了子节点v的和没经过子节点的相加即可,f[u][j]=f[u][j]+f[v][j-1],v节点的j的减一,这是因为,u到v已经走了一格,v再往下就只能走j-1了,加起来才能是j, 然后我们通过一遍dfs,跑出了f[u][0],f[u][1]....f[u][k]

        接下来就要考虑换根了, 下面我们演示k=3时的换根,看看有那些变化

        

         于是我们发现,再1为根节点的时候,蓝色部分是满足条件k=3的,但是换根之后,反而不满足以2为根了,这是因为换根之后,左边都经过v(这里等于2)往下的节点,都降低了,然后对于节点7,再根为1的时候是满足k=2的,但是由于右边没有经过v,所以他的长度上升了,所以可以加入到我们换根之后满足k=3的节点中。于是我们知道是需要加上f[u][j-1]的。

         如上图,当我们加上f[u][j-1]的时候,还加上了一些我们不需要的,如3和4,这时候我们要想办法把他去掉,在根为u的时候,这些节点是k=j-1的情况,于是在根为v的时候,自然就是k=j-2了,于是我们再减去f[v][j-2],我们此时又突然发现,我们好像把1号节点,也就是我们原来的根u不小心也给剪掉了,因为是跟3和4处于同一层。但是这个情况指挥出现在更新f[v][1]的情况跟下出现,于是我们需要在最后f[v][1]上加上w[u]即可。

代码 

//定义f[u][i]表示以u为根节点,距离u的距离为i的点权之和
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=1e5+10;
ll e[N*2],ne[N*2],f[N][25];//
int h[N],idx,w[N];//点权值
int n,k;

void add(int a,int b)
{
	e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}


void dfs(int u,int fa)
{
	f[u][0]=w[u];//距离为0就是本身
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		dfs(v,u);//从子节点推到父节点
		for(int j=1;j<=k;j++)
			f[u][j]+=f[v][j-1];
	}
}

//换根
void dfs2(int u,int fa)
{
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		for(int j=k;j>=2;j--)//采用逆序更新,从大的先来,从小的会被覆盖
			f[v][j]+=f[u][j-1]-f[v][j-2];
		f[v][1]+=w[u];
		dfs2(v,u);
	}
}

int main()
{
	memset(h,-1,sizeof h);
	cin>>n>>k;
	for(int i=1;i<n;i++)
	{
		int a,b;cin>>a>>b;
		add(a,b),add(b,a);
	}
	for(int i=1;i<=n;i++)
		cin>>w[i];
		
	dfs(1,0);
	dfs2(1,0);
	for(int i = 1; i <= n; i++)
    {
        ll ans = 0;
        for(int j = 0; j <= k; j++)
        ans += f[i][j];
        cout << ans << endl;
    }

	return 0;
}

4.Maximum White Subtree

分析

        题目的大致意思是,给定一棵 n个节点无根树,每个节点 u有一个颜色 ​,若 颜色为 0 则表示u是黑点,若 为 1 则表示u是白点。因为颜色白色是1,对我们的树有贡献,黑色是0,对我们的树没有贡献,所以我们需要求白色点的个数减去黑色点的个数 cnt1−cnt2​ 的最大值。

        由于黑色点是没有贡献,他存在就会使得我们的结果变小,于是我们假设从某节点出发,遇黑-1,遇白+1。

        假设 u 为根节点, v 为一个子节点,于是我们有如下状态转移

dp[u]=dp[u]+dp[v]>0?dp[v]:0 这表示总根 u 的获得的总贡献值等于,从子节点 v 往下的贡献值,加上不经过子节点 v 的贡献值。对于负的贡献值显然我们不需要把他计入其内。

     于是我们通过跑一遍 dfs 便得出了我们想要的根节点 u 的贡献值,接下来我们来进行换根

            蓝色的表示有有贡献值,红色的表示没有,画了黄圈的表示答案

我们考虑 v 及其子树是否对 u 有贡献,如果有贡献,如上下图,为3和4,我们现在把根 u 换下去了,自然3和4不能成为成为其子树,所以此时dp[u] 应该减去dp[v],对于新根dp[v]的计算方法,现在 u 是其子树了,那自然要加上dp[u](加了几个点,不理解可以看一下10和11这里)

代码

 

//定义状态f[u]表示以u为根节点的最大值
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=2e5+10;
ll e[N*2],ne[N*2];
int h[N],idx,a[N],f[N];
int n;

void add(int a,int b)
{
	e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void dfs(int u,int fa)
{
	f[u]=(a[u]==1?1:-1);
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		dfs(v,u);//由子节点更新到父节点,所以要先dfs找到叶子节点
		f[u]+=(f[v]>0?f[v]:0);//大于0才往上面更新
	}
}

//换根
void dfs2(int u,int fa)
{
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v=e[i];
		if(v==fa)continue;
		int x=f[u],y=f[v];//需要先用临时变量储存起来
		if(y>0)x-=y;
		if(x>0)y+=x;//有贡献的时候才加进来
		f[v]=y;
		dfs2(v,u);
	}
}

int main()
{
	memset(h,-1,sizeof h);
	cin>>n;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	for(int i=1;i<n;i++)
	{
		int a,b;cin>>a>>b;
		add(a,b),add(b,a);
	}
	dfs(1,0);
	dfs2(1,0);
	for(int i=1;i<=n;i++)
		cout<<f[i]<<" ";
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值