寻找两条最短路的公共路径

寻找两条最短路的公共路径

[SDOI2009] Elaxia的路线

题目描述

最近,Elaxia 和 w** 的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的时间。

Elaxia 和 w** 每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。

现在已知的是 Elaxia 和 w** 所在的宿舍和实验室的编号以及学校的地图:
地图上有 n n n 个路口, m m m 条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。

输入格式

第一行两个正整数 n , m n,m n,m,表示点数和边数。

第二行四个正整数 x 1 , y 1 , x 2 , y 2 x_1,y_1,x_2,y_2 x1,y1,x2,y2,分别表示 Elaxia 的宿舍和实验室及 w** 的宿舍和实验室的标号。

接下来 m m m 行,每行三个整数 u , v , w u,v,w u,v,w,表示 u , v u,v u,v之间有一条边,需要 w w w 的时间经过。

输出格式

一行一个整数表示答案。(即最长公共路径的长度)

样例 #1

样例输入 #1

9 10
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1

样例输出 #1

3

提示

【数据范围】
对于 30 % 30\% 30% 的数据, 1 ≤ n ≤ 100 1\le n \le 100 1n100
对于 60 % 60\% 60% 的数据, 1 ≤ n ≤ 1000 1\le n \le 1000 1n1000
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 1500 1\le n \le 1500 1n1500 1 ≤ m ≤ 3 × 1 0 5 1 \leq m \leq 3 \times 10^5 1m3×105 1 ≤ w ≤ 1 0 4 1\le w \le 10^4 1w104,输入数据保证没有重边和自环。

#include<bits/stdc++.h>
using namespace std;
const int N=2010;
struct edge{
    int v,nxt;
    int w;
}e1[N*N],e2[N*N];
struct Node{
    int dis,u;
    bool operator<(const Node &a) const{
        return a.dis<dis;
    }
};
int cnt1,cnt2,head1[N],head2[N],ans;
int dis[5][N],in[N],len[N],vis[N];
int n,m,pos1,pos2,pos3,pos4;
void add1(int u,int v,int w){
    e1[cnt1].w=w;
    e1[cnt1].v=v;
    e1[cnt1].nxt=head1[u];
    head1[u]=cnt1++;
}
void add2(int u,int v,int w){
    in[v]++;
    e2[cnt2].w=w;
    e2[cnt2].v=v;
    e2[cnt2].nxt=head2[u];
    head2[u]=cnt2++;
}
void dijkstra(int id,int s){
    priority_queue<Node> pq;
    memset(vis,0,sizeof(vis));
    memset(dis[id],0x3f,sizeof(dis[id]));
    pq.push((Node){0,s});
    dis[id][s]=0;
    while(!pq.empty()){
        int u=pq.top().u;
        int d=pq.top().dis;;
        pq.pop();
        if(vis[u]) continue;
        vis[u]=1;
        for(int i=head1[u];i+1;i=e1[i].nxt){
            int v=e1[i].v;
            if(vis[v]) continue;
            if(dis[id][v]>d+e1[i].w){
                dis[id][v]=d+e1[i].w;
                pq.push((Node){dis[id][v],v});
            }
        }
    }
}
void tuopu(){
    queue<int> q;
    for(int i=1;i<=n;i++){
        if(!in[i]) q.push(i);
    }
    while(!q.empty()){
        int u=q.front();
        q.pop();
        for(int i=head2[u];i+1;i=e2[i].nxt){
            int v=e2[i].v;
            len[v]=max(len[v],len[u]+e2[i].w);
            if(--in[v]==0) q.push(v);
        }
    }
}
int main(){
    memset(head1,-1,sizeof(head1));
    scanf("%d%d%d%d%d%d",&n,&m,&pos1,&pos2,&pos3,&pos4);
    for(int i=1;i<=m;i++){
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        add1(u,v,w);
        add1(v,u,w);
    }
    dijkstra(1,pos1);dijkstra(2,pos2);
    dijkstra(3,pos3);dijkstra(4,pos4);
    memset(head2,-1,sizeof(head2));
    for(int u=1;u<=n;u++){
        for(int i=head1[u];i+1;i=e1[i].nxt){
            int v=e1[i].v;
            if(dis[1][u]+e1[i].w+dis[2][v]==dis[1][pos2]&&
               dis[3][u]+e1[i].w+dis[4][v]==dis[3][pos4]) add2(u,v,e1[i].w);
        }
    }
    tuopu();
    for(int i=1;i<=n;i++) ans=max(ans,len[i]);
    memset(in,0,sizeof(in));
    memset(len,0,sizeof(len));
    memset(head2,-1,sizeof(head2));
    cnt2=0;
    for(int u=1;u<=n;u++){
        for(int i=head1[u];i+1;i=e1[i].nxt){
            int v=e1[i].v;
            if(dis[1][u]+e1[i].w+dis[2][v]==dis[1][pos2]&&
               dis[4][u]+e1[i].w+dis[3][v]==dis[3][pos4]) add2(u,v,e1[i].w);
        }
    }
    tuopu();
    for(int i=1;i<=n;i++) ans=max(ans,len[i]);
    printf("%d",ans);
    return 0;
}

最关键的部分即为这一段

for(int u=1;u<=n;u++){
    for(int i=head1[u];i+1;i=e1[i].nxt){
        int v=e1[i].v;
        if(dis[1][u]+e1[i].w+dis[2][v]==dis[1][pos2]&&
           dis[3][u]+e1[i].w+dis[4][v]==dis[3][pos4]) add2(u,v,e1[i].w);
    }
}

跑过四遍最短路后,即可得到一个点到其他点的距离,因为Elaxia和w**的路线都有多条最短路,然后就可以枚举每条边,把属于两种路线中最短路共有的部分找出来,建一张图,然后对图进行拓扑排序,就可得到最长公共路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值