今天状态很差,很困,无精打采。学到的Spark知识,没有连贯起来,很多知识点有印象但是很模糊,说不出个123来。本来今天要看看cache,checkpoint和broadcast,结果今天到现在为止已经是5点了,还没有任何的进展。开始硬着头皮把Spark的Cache机制搞一搞吧,发现,cache机制比想象中的难驾驭。
调用reduceByKey对应的ShuffledRDD对应的cache
cache不起作用
package spark.examples
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
object SparkWordCountCache {
def main(args: Array[String]) {
System.setProperty("hadoop.home.dir", "E:\\devsoftware\\hadoop-2.5.2\\hadoop-2.5.2");
val conf = new SparkConf()
conf.setAppName("SparkWordCount")
conf.setMaster("local[3]")
conf.set("spark.shuffle.manager", "hash"); ///hash是否有影响?
val sc = new SparkContext(conf)
val rdd1 = sc.textFile("file:///D:/word.in.3");
val rdd2 = rdd1.flatMap(_.split(" "))
val rdd3 = rdd2.map((_, 1))
val rdd4 = rdd3.reduceByKey(_ + _, 3);
rdd4.cache();
rdd4.saveAsTextFile("file:///D:/wordout" + System.currentTimeMillis());
val result = rdd4.collect; ///没有触发ShuffleMapTask执行,但是依然需要从ShuffleMapTask产生的结果拉取数据
result.foreach(println(_));
sc.stop
}
}
以上代码调用rdd3.cache(),而rdd3是一个ShuffleMapRDD,也就是说,保存的是Stage2里面的RDD结果。此时调用cache.collect时,产生的Task都是ResultTask,也就是说,由于cache作用,最后一个Job并没有从前面从头计算?
感觉不对,即使不用cache,也应该不会从头计算吧
经验证,感觉是对的,将上面的代码做如下修改,结果一样,最后也不会调用ShuffleMapTask,但是在执行ResultTask时,还是会从MapTask的输出中拉取数据,所以并没有对Shuffle读过程进行简化。
rdd3.saveAsTextFile("file:///D:/wordout" + System.currentTimeMillis());
val result = rdd3.collect;
result.foreach(println(_));
上来就踩了个cache的坑!Spark是不支持ShuffleMapRDD的cache的,虽然上面不需要ShuffleMapTask,但是ResultTask运行时,依然需要从MapTask的结果中拉取数据
调用groupByKey对应的ShuffledRDD对应的cache
结果rdd.cache起作用了
package spark.examples
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SparkGroupByExample {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("GroupByKey").setMaster("local")
val sc = new SparkContext(conf)
sc.setCheckpointDir("/tmp/checkpoint/" + System.currentTimeMillis())
val data = Array[(Int, Char)]((1, 'a'), (2, 'b'),
(3, 'c'), (4, 'd'),
(5, 'e'), (3, 'f'),
(2, 'g'), (1, 'h')
)
val pairs = sc.parallelize(data)
val rdd = pairs.groupByKey(2)
rdd.cache
rdd.count;
rdd.collect.foreach(println(_));
}
}
调用textFile对应的MappedRDD对应的cache操作
基本流程:假如在一个程序中有两个Job。第一个Job运行时,,对于调用了cache的RDD首先计算它的数据,然后写入cache。第二个job在运行时,会直接从cache中读取。
这对于迭代计算的Job,会非常适合,将上个任务的结果缓存,供第二个任务使用,然后依次类推
package spark.examples
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
object SparkWordCountCache {
def main(args: Array[String]) {
System.setProperty("hadoop.home.dir", "E:\\devsoftware\\hadoop-2.5.2\\hadoop-2.5.2");
val conf = new SparkConf()
conf.setAppName("SparkWordCount")
conf.setMaster("local")
//Hash based Shuffle;
conf.set("spark.shuffle.manager", "hash");
val sc = new SparkContext(conf)
val rdd1 = sc.textFile("file:///D:/word.in.3");
rdd1.cache() ///数据读取后即做cache,第一个job运行后,就会缓存
val rdd2 = rdd1.flatMap(_.split(" "))
val rdd3 = rdd2.map((_, 1))
val result = rdd3.collect; ///打印rdd3的内容
result.foreach(println(_));
val rdd4 = rdd3.reduceByKey(_ + _); ///对rdd3做reduceByKey操作
rdd4.saveAsTextFile("file:///D:/wordout" + System.currentTimeMillis());
sc.stop
}
}
源代码基本流程:
- 调用RDD的iterator方法,计算RDD的数据集合(得到的是一个可迭代的集合)
- 在RDD的iterator方法中,检查RDD的storage level,如果设置了storage level,那么调用SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
- 在CacheManager的getOrCompute方法中,
a.首先判断是否存在于cache中,如果存在则直接返回,
b.如果不存在,则调用 val computedValues = rdd.computeOrReadCheckpoint(partition, context)进行计算。
c.计算结束后,调用CacheManager自身的putInBlockManager将计算得到的数据缓存
d. 数据放入BlockManager后,还需要更新这个RDD和BlockManager之间的对应关系,以便下次再计算这个RDD时,检查RDD数据是否已经缓存
主要源代码
1. getOrCompute方法
/** Gets or computes an RDD partition. Used by RDD.iterator() when an RDD is cached. */
def getOrCompute[T](
rdd: RDD[T],
partition: Partition,
context: TaskContext,
storageLevel: StorageLevel): Iterator[T] = {
val key = RDDBlockId(rdd.id, partition.index) //RDD的id和partition的index构造RDDBlockId,一个RDD可以有多个partition
logDebug(s"Looking for partition $key")
blockManager.get(key) match { ///从blockManger中根据key查找,key最后会存入BlockManager么吗?BlockManager管理Spark的块信息
case Some(blockResult) =>
// Partition is already materialized, so just return its values
context.taskMetrics.inputMetrics = Some(blockResult.inputMetrics)
new InterruptibleIterator(context, blockResult.data.asInstanceOf[Iterator[T]])
case None =>
// Acquire a lock for loading this partition
// If another thread already holds the lock, wait for it to finish return its results
val storedValues = acquireLockForPartition[T](key) ///根据Key获取缓存的数据,acquireLockForPartition名字起得不好
if (storedValues.isDefined) { ///找到数据
return new InterruptibleIterator[T](context, storedValues.get)
}
// Otherwise, we have to load the partition ourselves
///为找到缓存的数据,表明是job第一次运行
try {
logInfo(s"Partition $key not found, computing it")
val computedValues = rdd.computeOrReadCheckpoint(partition, context) ///计算RDD数据
// If the task is running locally, do not persist the result
if (context.isRunningLocally) { ///如果数据在本地,就不需要缓存了?
return computedValues
}
// Otherwise, cache the values and keep track of any updates in block statuses
///缓存数据
val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]
///将数据存入BlockManager,注意四个参数
val cachedValues = putInBlockManager(key, computedValues, storageLevel, updatedBlocks)
///这是什么意思?任务的metrics,任务的
val metrics = context.taskMetrics
val lastUpdatedBlocks = metrics.updatedBlocks.getOrElse(Seq[(BlockId, BlockStatus)]())
metrics.updatedBlocks = Some(lastUpdatedBlocks ++ updatedBlocks.toSeq)
new InterruptibleIterator(context, cachedValues)
} finally {
loading.synchronized {
loading.remove(key)
loading.notifyAll()
}
}
}
}
2. putInBlockManager方法
/**
* Cache the values of a partition, keeping track of any updates in the storage statuses of
* other blocks along the way.
*
* The effective storage level refers to the level that actually specifies BlockManager put
* behavior, not the level originally specified by the user. This is mainly for forcing a
* MEMORY_AND_DISK partition to disk if there is not enough room to unroll the partition,
* while preserving the the original semantics of the RDD as specified by the application.
*/
private def putInBlockManager[T](
key: BlockId,
values: Iterator[T],
level: StorageLevel,
updatedBlocks: ArrayBuffer[(BlockId, BlockStatus)],
effectiveStorageLevel: Option[StorageLevel] = None): Iterator[T] = {
val putLevel = effectiveStorageLevel.getOrElse(level)
if (!putLevel.useMemory) {
/*
* This RDD is not to be cached in memory, so we can just pass the computed values as an
* iterator directly to the BlockManager rather than first fully unrolling it in memory.
*/
updatedBlocks ++=
blockManager.putIterator(key, values, level, tellMaster = true, effectiveStorageLevel)
blockManager.get(key) match {
case Some(v) => v.data.asInstanceOf[Iterator[T]]
case None =>
logInfo(s"Failure to store $key")
throw new BlockException(key, s"Block manager failed to return cached value for $key!")
}
} else {
/*
* This RDD is to be cached in memory. In this case we cannot pass the computed values
* to the BlockManager as an iterator and expect to read it back later. This is because
* we may end up dropping a partition from memory store before getting it back.
*
* In addition, we must be careful to not unroll the entire partition in memory at once.
* Otherwise, we may cause an OOM exception if the JVM does not have enough space for this
* single partition. Instead, we unroll the values cautiously, potentially aborting and
* dropping the partition to disk if applicable.
*/
blockManager.memoryStore.unrollSafely(key, values, updatedBlocks) match {
case Left(arr) =>
// We have successfully unrolled the entire partition, so cache it in memory
updatedBlocks ++=
blockManager.putArray(key, arr, level, tellMaster = true, effectiveStorageLevel)
arr.iterator.asInstanceOf[Iterator[T]]
case Right(it) =>
// There is not enough space to cache this partition in memory
val returnValues = it.asInstanceOf[Iterator[T]]
if (putLevel.useDisk) {
logWarning(s"Persisting partition $key to disk instead.")
val diskOnlyLevel = StorageLevel(useDisk = true, useMemory = false,
useOffHeap = false, deserialized = false, putLevel.replication)
putInBlockManager[T](key, returnValues, level, updatedBlocks, Some(diskOnlyLevel))
} else {
returnValues
}
}
}
}