缓存击穿
和缓存穿透不同的是,缓存击穿是指:缓存中没有,但是数据库中存在的热点数据。
例如:首页的热点新闻,并发访问量非常大的热点数据,如果缓存过期失效,服务器会去查询DB,这时候如果大量的并发去查询DB,可能会瞬间压垮DB。
画了个简图,如下所示:
解决方案:DB查询加分布式锁。
未加锁的情况
解决问题之前,先看一下不做处理的代码和运行情况。
根据商品ID查询商品详情代码
清空Redis缓存,开启5个线程去并发访问测试,测试代码如下:
我们预期希望DB只查询一次,后面4个查询从Redis缓存中取就行,但是结果:
没有加分布式锁,结果也在意料之中,但是这样容器给DB造成很大压力。
如果是单台服务器,直接使用Java的同步锁即可
遗憾的是,通常后端是会部署集群的,Java的同步锁可没办法实现分布式锁。
Redis分布式锁解决缓存击穿
Java的内置锁只能应用在单台机器上,无法实现分布式,可以巧用Redis来实现分布式锁。
加了分布式锁后的代码
//根据ID查询商品
@GetMapping("/{id}")
public R id(@PathVariable String id){
//先查Redis缓存
Object o = redisTemplate.opsForValue().get(id);
if (o != null) {
//命中缓存
System.err.println("id:"+id+",命中redis缓存...");
return R.success(o);
}
//缓存未命中 查询数据库
String lockKey = "lock" + id;
//加锁,10s后过期
for (;;) {
if (redisTemplate.opsForValue().setIfAbsent(lockKey, System.currentTimeMillis(), 10L, TimeUnit.SECONDS)) {
//加锁成功的线程,再次检查
o = redisTemplate.opsForValue().get(id);
if (o != null) {
//命中缓存
System.err.println("Thread:" + Thread.currentThread().getName() + ",id:"+id+",命中redis缓存...");
//释放锁
redisTemplate.delete(lockKey);
return R.success(o);
}
//仍未命中
System.err.println("Thread:" + Thread.currentThread().getName() + ",id:" + id + ",查询DB...");
Goods goods = goodsMapper.selectById(id);
//结果存入Redis
redisTemplate.opsForValue().set(id, goods);
//释放锁
redisTemplate.delete(lockKey);
return R.success(goods);
}
//竞争不到锁,暂时让出CPU资源
Thread.yield();
}
}
启动5个线程,并发访问,结果如下图:
这里介绍的只是最简单的方案,实际情况要考虑复杂的多,例如:不能误解锁、锁超时等问题。
————————————————
版权声明:本文为CSDN博主「程序员小潘」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_32099833/article/details/103848016