对numpy中的respace的理解

numpy.respace()的说明文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy-reshape
贴出方法的说明:
numpy.reshape
numpy.reshape(a, newshape, order=‘C’)[source]
Gives a new shape to an array without changing its data.

Parameters:
a : array_like
Array to be reshaped.

newshape : int or tuple of ints
The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional
Read the elements of a using this index order, and place the elements into the reshaped array using this index order. ‘C’ means to read / write the elements using C-like index order, with the last axis index changing fastest, back to the first axis index changing slowest. ‘F’ means to read / write the elements using Fortran-like index order, with the first index changing fastest, and the last index changing slowest. Note that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array, and only refer to the order of indexing. ‘A’ means to read / write the elements in Fortran-like index order if a is Fortran contiguous in memory, C-like order otherwise.

Returns:
reshaped_array : ndarray
This will be a new view object if possible; otherwise, it will be a copy. Note there is no guarantee of the memory layout (C- or Fortran- contiguous) of the returned array.

作用:重新构造numpy arrays 的形状,返回新的numpy 数组。

例:
假设存在一个numpy 数组 a(4,4),它的shape属性(即:形状)为4行4列。

a=numpy.array([[1,2,3,4],
		 	  [5,6,7,8],
		 	  [9,10,11,12],
		 	  [13,14,15,16]])

使用
respace(-1,1)新的numpy arrays的(行数=元素个数/列数),列数为1.

In:a.reshape(-1,1)
Out:array([[ 1],
        	[ 2],
        	[ 3],
        	[ 4],
        	[ 5],
        	[ 6],
        	[ 7],
        	[ 8],
        	[ 9],
        	[10],
        	[11],
        	[12],
        	[13],
        	[14],
        	[15],
        	[16]])

respace(-1,2)新数组的行数为16/2=8,列数为2.

In: a.reshape(-1, 2)
Out: array([[ 1,  2],
        	[ 3,  4],
        	[ 5,  6],
        	[ 7,  8],
        	[ 9, 10],
        	[11, 12],
        	[13, 14],
        	[15, 16]])

2:当然也可以同时指定行数、列数

In: a.reshape(2,8)
Out: array([1,2,3,4,5,6,7,8],
	 		[9,10,11,12,13,15,16])

3:若指定的列数和行数的乘积 小于或大于 元素个数
将会报错

ValueError: cannot reshape array of size 16 into shape (2,2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值