Markdown快速入手

题外话

用了Markdown才知道,原来专注于敲键盘是这么的爽!根本不用费心去思考排版的事情。再想想用office word编辑文章时,时不时的需要腾出手中断打字去用鼠标点击某个功能、或是用一连串难以熟记的快捷键进行操作、文章编辑完成后拿去打印却发现排版混乱…,不得不感叹一句,解脱了!
Markdown的上手真的很快捷,你只需掌握一些简单的语法,就能快速的上手,而这可能只需花费你几分钟的时间。
这篇博客从实用的角度出发,让你快速的入手。


掌握 《二、使用》中的1、2后就能进行基本的文章编辑,相当快。其余内容再碰到后随用随查就行,也没必要全记住!!!


其实说到markdown就不得不说排版语言中的老大Tex/Latex,这才是真正的强无敌!有兴趣的朋友可以去了解一下(方式嘛,百度、谷歌都行。)

markdown的一个特点就是轻量化、兼容性好,兼具Tex/Latex的一部分特性。完整的Tex/Latex环境蛮大的(图片里我安装的是TextLive2019)。
ps:个人理解,没有经过论证
在这里插入图片描述
csdn使用KaTex作为数学公式渲染库,所以如果语法错误,那么会有下面的报错。
在这里插入图片描述

一、简介

Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容具有一定的格式。
Markdown具有一系列衍生版本,用于扩展Markdown的功能(如表格、脚注、内嵌HTML等等),这些功能原初的Markdown尚不具备,它们能让Markdown转换成更多的格式,例如LaTeX,Docbook。Markdown增强版中比较有名的有Markdown Extra、MultiMarkdown、 Maruku等。这些衍生版本要么基于工具,如Pandoc;要么基于网站,如GitHub和Wikipedia,在语法上基本兼容,但在一些语法和渲染效果上有改动。

取自百度百科

二、使用

1 语法

(markdown倒没什么要特别强调的语法,不过Tex/Latex中有不少)
$符号划定公式的范围。即两个$或两对$$之间的内容就是要表示的公式。

行内公式,用$符号包裹起来
行间公式,用$$包裹起来包裹起来


{ }作用域,和C、Java等编程语言内的含义相似


\转意符号,和正则表达式中的含义相似

1.1 标题

用“#”表示添加标题,“#”的个数表示标题的级别,注意“#”后面要添加“空格”,之后再键入文本。

# 这是一级标题
## 这是二级标题
### 这是三级标题
#### 这是四级标题
##### 这是五级标题
###### 这是六级标题

效果:
在这里插入图片描述

1.2 强调内容(加粗、斜体…)

加粗
在要加粗的文本两侧使用两个星号“ ** ”。

斜体
在要倾斜的文本使用一个星号“ * ”。

斜体加粗
在要倾斜加粗的文本使用三个星号“ *** ”。

删除线
要添加删除线的文本使用两个“ ~~ ”。

**这是加粗的文本**
*这是倾斜的文本*`
***这是斜体加粗的文本***
~~这是加删除线的文本~~

效果
在这里插入图片描述

1.3 引用

在引用的文字前加>即可。引用可以嵌套,如加两个>>三个>>> …n…>>

>一级引用的内容
>>二级引用的内容
>>>>>>>多级引用的内容

效果:
在这里插入图片描述

1.4 分割线

三个及以上的“-”或“*”都可以显示为分割线

***
****
---
----

效果:
在这里插入图片描述

1.5 插入图片

首先,一个感叹号 !
接着,一个方括号[],里面放上图片的替代文字
再接着,一个普通括号(),里面放上图片的网址,最后还可以用引号包住并加上 选择性的 ‘title’ 文字。

![text](https://justyy.com/wp-content/uploads/2016/01/markdown-syntax-language.png)

效果:
在这里插入图片描述

1.6 插入代码块

在代码段的段前段后使用三个反引号“```”,即可插入代码段。可以在第一组反引号后指定代码的类别

要插入的文本

效果:
在这里插入图片描述

1.7 文字居中

<center>文字居中</center>

效果:
在这里插入图片描述

1.8 超链接

1 行内超链接[title](link)

2 引用形式的超链接

[title][number]

[number]:link "注释"

1.9 下划线

找到了一种HTML的语法,使用<u></u>标签。(u指的是:underline 下划线)
<u>下划线</u>

效果:
下划线

2 自动生成目录

在文章的第一行添加

@[TOC](文章目录)

即可在使用markdown语法的文章中自动生成目录。
效果:
在这里插入图片描述

3 字符的上标和字符的下标

方法一

出自html语法
上标(superscript):
将上标内容放在<sup></sup>标签内,如:
F<sup>1</sup>
效果:F1

下标(subscript):
将下标内容放在<sub></sub>标签内,如:
F<sub>1</sub>
效果:F1

方法二

标准的markdown语法
^表示上标,_表示下标
$x^1$ , $x_2$

效果:
x 1 x^1 x1 , x 2 x_2 x2

参考资料:https://www.jianshu.com/p/7fb29b741fd7
.
Markdown中数学公式整理
https://blog.csdn.net/zdk930519/article/details/54137476

4 编辑数学公式

$符号划定公式的范围。即两个$或两对$$之间的内容就是要表示的公式。

行内公式,用$符号包裹起来
行间公式,用$$包裹起来包裹起来

4.1 根号 sqrt

根号开方使用\sqrt标记,语法格式如下:
\sqrt[开方次数,默认为2]{被开方的数}

这是行内公式
$\sqrt[2]{4}$

这是行间公式
$$\sqrt{x^3}$$

效果:
在这里插入图片描述

参考资料:
Markdown编辑公式和CSDN-Markdown编辑公式
https://blog.csdn.net/shmilychan/article/details/51482945

4.2 在字符上添加横线

$\overline{x}$

效果:
x ‾ \overline{x} x

4.3 编辑矩阵

$$\left\{
\begin{matrix}         
a & b & c\\
d & e & f\\
\end{matrix}
\right\}$$

\begin{matrix}....\end{matrix}代表矩阵的范围,内部的元素是要显示在矩阵里的。
\left\{.........\right\}是用花括号包裹矩阵,因为{ }在语法中标识作用域,因此要用\转义符号将其转为普通的花括号。
&的作用是间隔一行内的多个元素
\\的作用是换行
效果:
{ a b c d e f } \left\{ \begin{matrix} a & b & c\\ d & e & f\\ \end{matrix} \right\} {adbecf}

$$EA=\left\{
\begin{matrix}
(BX)\\
(BP)\\
(SI)\\
(DI)\\
\end{matrix}
\right\}
+\left\{
\begin{matrix}
8位\\
16位\\
\end{matrix}
位移量\right\}
$$
-----------------------------------------------------------
$$
(DS)_{左移4位}+(BX)+
\left \{
\begin{matrix}
(DI)\\
(SI)\\
\end{matrix}
\right \}
$$
-----------------------------------------------------------------
$$
EA=
\left\{
\begin{matrix}
(BX)\\
(BP)\\
\end{matrix}
\right\}
+
\left\{
\begin{matrix}
(SI)\\
(DI)\\
\end{matrix}
\right\}
+
\left\{
\begin{matrix}
8位\\
16位\\
\end{matrix}
位移量
\right\}
$$

效果
E A = { ( B X ) ( B P ) ( S I ) ( D I ) } + { 8 位 16 位 位 移 量 } EA=\left\{ \begin{matrix} (BX)\\ (BP)\\ (SI)\\ (DI)\\ \end{matrix} \right\} +\left\{ \begin{matrix} 8位\\ 16位\\ \end{matrix} 位移量\right\} EA=(BX)(BP)(SI)(DI)+{816}

( D S ) 左 移 4 位 + ( B X ) + { ( D I ) ( S I ) } (DS)_{左移4位}+(BX)+ \left \{ \begin{matrix} (DI)\\ (SI)\\ \end{matrix} \right \} (DS)4+BX+{(DI)(SI)}

E A = { ( B X ) ( B P ) } + { ( S I ) ( D I ) } + { 8 位 16 位 位 移 量 } EA= \left\{ \begin{matrix} (BX)\\ (BP)\\ \end{matrix} \right\} + \left\{ \begin{matrix} (SI)\\ (DI)\\ \end{matrix} \right\} + \left\{ \begin{matrix} 8位\\ 16位\\ \end{matrix} 位移量 \right\} EA={(BX)(BP)}+{(SI)(DI)}+{816}
参考资料:https://www.jianshu.com/p/08cbe54a5f33

4.4 分数

\frac{分子}{分母}

$$\frac{分子}{分母}$$
效果
分 子 分 母 \frac{分子}{分母}

4.5 为公式添加标签

\tag{number}

$$2^{14}=2^4\times2^{10}=16K\tag{1}$$

$$\frac{16Kx8}{8Kx4}=4片\tag{2}$$

效果:
2 14 = 2 4 × 2 10 = 16 K (1) 2^{14}=2^4\times2^{10}=16K\tag{1} 214=24×210=16K(1)
16 K × 8 8 K × 4 = 4 片 (2) \frac{16K\times8}{8K\times4}=4片\tag{2} 8K×416K×8=4(2)

4.6 编辑一段公式(公式对齐)

使用\begin{aligned} .... \end{aligned}定义(对齐)环境,{}内的aligned是环境名。
在环境中使用&符号连结一段公式中的不同行,使用\\符号进行换行。
(注:行与行之间如果不用&连结,那么会被视为两段公式)

$$\begin{aligned}
    \phi_{k+N}[n]
    &=e^{j(k+N)(2\pi/N)n} \\
    &=e^{jk(2\pi/N)n}e^{j2\pi n} \\
    &=\phi_k[n]
    \tag{1.61}
\end{aligned}$$

效果:
ϕ k + N [ n ] = e j ( k + N ) ( 2 π / N ) n = e j k ( 2 π / N ) n e j 2 π n = ϕ k [ n ] (1.61) \begin{aligned} \phi_{k+N}[n] &=e^{j(k+N)(2\pi/N)n} \\ &=e^{jk(2\pi/N)n}e^{j2\pi n} \\ &=\phi_k[n] \tag{1.61} \end{aligned} ϕk+N[n]=ej(k+N)(2π/N)n=ejk(2π/N)nej2πn=ϕk[n](1.61)

4.7 数学空格

小空格\quad,大空格\qquad
注:\quad相当于一个 M M M的距离\qquad相当于两个 M M MM MM的距离

测试:
$MMMMMMMMM\\M\quad MMM\qquad MM$
效果:
M M M M M M M M M M M M M M M MMMMMMMMM\\M\quad MMM\qquad MM MMMMMMMMMMMMMMM

5 符号表

符号语法($$划定行间公式)含义
希腊字母
θ \theta θ$\theta$希腊字母 θ \theta θ
η \eta η$\eta$希腊字母 η \eta η
β \beta β$\beta$希腊字母 β \beta β
ϵ \epsilon ϵ$\epsilon$希腊字母 ϵ \epsilon ϵ
δ \delta δ$\delta$希腊字母 δ \delta δ
∂ \partial $\partial$希腊字母 ∂ \partial
λ \lambda λ$\lambda$希腊字母 λ \lambda λ
ω \omega ω$\omega$希腊字母 ω \omega ω
其它符号
∼ \sim $\sim$
ℓ \ell $\ell$
∇ \nabla $\nabla$梯度(倒三角)
∞ \infty $\infty$无限
省略符号
… \dots $\dots$位于一行的底部
⋯ \cdots $\cdots$位于一行的中间
积分符号
∫ \int $\int$
上标和下标$\int_1^2$
积分符号
∫ 1 2 \int_1^2 12
∬ \iint $\iint$
∭ \iiint $\iiint$
∮ \oint $\oint$
求和符号
∑ \sum $\sum$
∑ 1 2 \sum_{1}^{2} 12$\sum_{1}^{2}$求和
(上下标默认位置为左右侧)
∑ 1 2 \sum\limits_{1}^{2} 12$\sum\limits_{1}^{2}$1.使用limits命令将上下标位置设置为在符号的上面、下面。
2.使用\nolimits关闭设置,等价于不使用limits命令。
总的来说就是\limits(强制上下限在上下侧) 和 \nolimits(强制上下限在左右侧)
箭头
← \leftarrow $\leftarrow$ or $\gets$左箭头
→ \rightarrow $\rightarrow$ or $\to$右箭头,箭头(arrow)
矩阵、向量、张量
a ⃗ \vec{a} a $\vec{a}$向量(vector),
{}的作用是划定符号的作用范围
⋅ \cdot $\cdot$点乘
⊗ \otimes $\otimes$矩阵乘(特殊形式
哈达马积(Hadamard product)
克罗内克积(Kronecker Product))
⊘ \oslash $\oslash$矩阵除
定界符这个是普通风格
∥ \Vert $\Vert$ or $\|$定界符
∣ \vert $\rvert$ or $|$
二运算符
× \times ×$\times$ × \times ×乘号
± \pm ±$\pm$正负符号
二元关系符
≤ \leq $\leq$ or $\le$
≥ \geq $\geq$ or $\ge$
AMS定界符AMS是一个宏包的简称,amsmath。是一种符号风格
∥ \lVert $\lVert$ or $\rVert$AMS定界符
∣ \rvert $\rvert$
AMS二元关系符
⩽ \leqslant $\leqslant$
⩾ \geqslant $\geqslant$

6 编辑表格

| 列名1 | 列明2 |
|--|--|
| ABC的风格 | 权威调查 |

效果:

列名1列明2
ABC的风格权威调查

6.1 表格内换行

在需要换行的地方插入<br>标签即可(原因是Markdown兼容Html语法):

| 列名1 | 列名2 |
|--|--|
| ABC<br>的风格 | 权威<br>调查 |

效果:

列名1列名2
ABC
的风格
权威
调查

6.2 表格内文字的居中、左对齐、右对齐

默认的对齐方式是:居中(|--|--|等价于|:--:|:--:|

| 列名1 | 列名2 |
|--|--|                           
| ABC<br>的风格 | 权威<br>调查 |

左对齐(|:--|:--|

| 列名1 | 列名2 |
|:--|:--|                           
| ABC<br>的风格 | 权威<br>调查 |

效果:

列名1列名2
ABC
的风格
权威
调查

右对齐(|--:|--:|

| 列名1 | 列名2 |
|--:|--:|                          
| ABC<br>的风格 | 权威<br>调查 |

效果:

列名1列名2
ABC
的风格
权威
调查

推荐阅读

LaTeX 黑魔法(六):使用比逼格更逼格的定界符

https://liam.page/2018/11/09/the-bigger-than-bigger-delimiter-in-LaTeX/

通常,我们建议在 LaTeX 中使用 LaTeX 提供的 \big, \Big, \bigg, \Bigg 一系列命令,代替 TeX 默认的 \left 和 \right 来调整定界符的大小。然而,尽管最大提供了 \Bigg 的命令,但有时候仍然不够用。
此篇介绍如何定义 \biggg, \Biggg, \bigggg 和 \Bigggg 系列命令。我们的口号是「比逼格更逼格」(bigger than bigger)!

markdown文档:

https://www.appinn.com/markdown/
你想实现的绝大多数编排功能均可以从文档中获取。

Markdown数学符号&公式:

https://blog.csdn.net/katherine_hsr/article/details/79179622

https://blog.csdn.net/zdk930519/article/details/54137476

CSDN·Markdown·KaTex/LaTex 用法小全

https://blog.csdn.net/c20182030/article/details/84840373

Latex排版全解

https://www.cnblogs.com/jingwhale/p/4250296.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值