LeetCode上有很多小岛题,虽然官方没有这个标签, 但是在我这里都差不多。不管是思路还是套路都比较类似,大家可以结合起来练习。
您可以选择阅读原文获得更好的阅读体验
200.number-of-islands[1]
695.max-area-of-island[2]
原题地址:https://leetcode-cn.com/problems/as-far-from-land-as-possible/
思路
这里我们继续使用上面两道题的套路,即不用visited,而是原地修改。由于这道题求解的是最远的距离,而距离我们可以使用BFS来做。算法:
对于每一个海洋,我们都向四周扩展,寻找最近的陆地,每次扩展steps加1。
如果找到了陆地,我们返回steps。
我们的目标就是所有steps中的最大值。
实际上面算法有很多重复计算,如图中间绿色的区域,向外扩展的时候,如果其周边四个海洋的距离已经计算出来了,那么没必要扩展到陆地。实际上只需要扩展到周边的四个海洋格子就好了,其距离陆地的最近距离就是1 + 周边四个格子中到达陆地的最小距离。
我们考虑优化。
将所有陆地加入队列,而不是海洋。
陆地不断扩展到海洋,每扩展一次就steps加1,直到无法扩展位置。
最终返回steps即可。
图解:
代码
class Solution:
def maxDistance(self, grid: List[List[int]]) -> int:
n = len(grid)
steps = -1
queue = [(i, j) for i in range(n) for j in range(n) if grid[i][j] == 1]
if len(queue) == 0 or len(queue) == n ** 2: return steps
while len(queue) > 0:
for _ in range(len(queue)):
x, y = queue.pop(0)
for xi, yj in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]:
if xi >= 0 and xi < n and yj >= 0 and yj < n and grid[xi][yj] == 0:
queue.append((xi, yj))
grid[xi][yj] = -1
steps += 1
return steps
由于没有early return,steps 其实会多算一次。我们可以返回值减去1,也可以steps初始化为-1。这里我选择是steps初始化为-1
复杂度分析
时间复杂度: