扩展欧几里得算法(求逆元)总结

1、在RSA算法生成私钥的过程中涉及到了扩展欧几里得算法(简称exgcd),用来求解模的逆元。

 

2、首先引入逆元的概念:

逆元是模运算中的一个概念,我们通常说 A 是 B 模 C 的逆元,实际上是指 A * B = 1 mod C,也就是说 A 与 B 的乘积模 C 的余数为 1。可表示为 A = B^(-1) mod C。

打个比方,7 模 11 的逆元,即:7^(-1) mod 11 = 8,这是因为 7 × 8 = 5 × 11 + 1,所以说 7 模 11 的逆元是 8。

 

3、在RSA算法中求私钥中的整数d时,需要使得 (e * d ) % m = 1,该方程等价于 e * d = 1 + y * m (y为整数),也等价于 e * d - y * m = 1。

因此求解d的过程就是求解该二元一次方程组(e和m已知,求解d和m),即求e模m的逆元。

 

4、在使用扩展欧几里德算法求解e模m的逆元前,首先通过证明扩展欧几里得算法来对该算法有一个简单的理解:

引理:存在 x , y 使得 gcd(a,b)=ax+by

证明:

        当 b=0 时,gcd(a,b)=a,此时 x=1 , y=0

        当 b!=0 时,

     设 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2

        又因 a%b=a-a/b*b

        则 ax1+by1=bx2+(a-a/b*b)y2

    ax1+by1=bx2+ay2-a/b*by2

    ax1+by1=ay2+bx2-b*a/b*y2

    ax1+by1=ay2+b(x2-a/b*y2)

   解得 x1=y2 , y1=x2-a/b*y2

   因为当 b=0 时存在 x , y 为最后一组解

   而每一组的解可根据后一组得到

   所以第一组的解 x , y 必然存在

   得证

根据上面的证明,在实现的时候采用递归做法

先递归进入下一层,等到到达最后一层即 b=0 时就返回x=1 , y=0

再根据 x1=y2 , y1=x2-a/b*y2 ( x2 与 y2 为下一层的 x 与 y ) 得到当层的解

不断算出当层的解并返回,最终返回至第一层,得到原解

 

5、使用扩展欧几里德算法的过程如下:

求exgcd(e, m)—>利用欧几里得算法不断递归直到x=1,y=0—>反向递归求出第一层的x和y,x即为e模m的逆元。

 

参考文档:

1)https://www.jianshu.com/p/fbb8bf7baa97

2)https://www.cnblogs.com/shuaihui520/p/8954788.html

转载于:https://www.cnblogs.com/GjqDream/p/11537934.html

  • 7
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
扩展欧几里得算法是一种解线性同余方程 ax ≡ 1 (mod m) 中 x 的逆元的方法。逆元是指数值 x 使得 ax 与 m 取模之后的结果为 1。 下面是一个用 Java 实现扩展欧几里得算法逆元的代码示例: ```java public class InverseElement { public static int extendedEuclidean(int a, int b) { int[] coeffs = new int[3]; // 存储扩展欧几里得算法解的系数 int x = 0, y = 0; while (b != 0) { coeffs = updateCoeffs(a, b, coeffs); a = coeffs[0]; b = coeffs[1]; x = coeffs[2]; y = coeffs[3]; } if (a == 1) { return (x % m + m) % m; // 防止结果为负数 } else { return -1; // 没有逆元 } } private static int[] updateCoeffs(int a, int b, int[] coeffs) { if (b == 0) { coeffs[0] = a; coeffs[1] = b; coeffs[2] = 1; coeffs[3] = 0; return coeffs; } coeffs = updateCoeffs(b, a % b, coeffs); int x1 = coeffs[2]; int y1 = coeffs[3]; coeffs[2] = y1; coeffs[3] = x1 - (a / b) * y1; return coeffs; } public static void main(String[] args) { int a = 7; int m = 11; int inverse = extendedEuclidean(a, m); System.out.println("逆元: " + inverse); } } ``` 在上述代码中,`extendedEuclidean` 方法实现了扩展欧几里得算法, `updateCoeffs` 方法用于更新系数, `main` 方法用于测试逆元的结果。在示例中,我们以 `a = 7` 和 `m = 11` 为例来逆元。 按照扩展欧几里得算法的步骤,我们递归调用 `updateCoeffs` 方法来更新系数,直到 b 为 0。然后,如果 a 为 1,则返回取模后的 x 值作为逆元;否则,返回 -1 表示没有逆元。 输出结果为:逆元:8,表示在模 11 下,7 的逆元为 8。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值