拓展欧几里得求逆元

A/B

  HDU - 1576 
乘法逆元:
对于缩系中的元素,每个数a均有唯一的与之对应的乘法逆元x,使得ax≡1(mod n)
一个数有逆元的充分必要条件是gcd(a,n)=1,此时逆元唯一存在 

逆元的含义:模n意义下,1个数a如果有逆元x,那么除以a相当于乘以x。

#include<iostream>
#include<cstdio>
using namespace std;
#define LL long long

void  exgcd(LL a,LL b,LL &x,LL &y)
{
    if(!b)
    {
        x=1;
        y=0;
        return ;
    }
    exgcd(b,a%b,x,y);
    LL t=x;
    x=y;
    y=t-a/b*y;
    return ;
}
int main()
{
    int t;
    LL x,y;
    scanf("%d",&t);
    while(t--)
    {
        LL n,b;
        cin>>n>>b;
        exgcd(b,9973,x,y);
        //cout<<x<<endl;
        x=(x%9973+9973)%9973;
        cout<<(n*x)%9973<<endl;
    }
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(元),其中元是指某个整数关于模数的乘法元素。 下面是我用C语言实现扩展欧几里得算法元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("元不存在\n"); return -1; // 元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理元不存在的情况。最后,通过用户输入需要元的整数`a`和模数`m`,并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值