2015多校第一场 hdu 5288 OO’s Sequence

题意:给定一个长度为n的序列,规定f(l,r)是对于l,r范围内的某个数字a[i],都不能找到一个对应的j使得a[i]%a[j]=0,那么l,r内有多少个i,f(l,r)就是几。问所有f(l,r)的总和是多少。

直接枚举每一个数字,对于这个数字,如果这个数字是合法的i,那么向左能扩展的最大长度是多少,向右能扩展的最大长度是多少,那么i为合法的情况就是左长度*右长度(包含i且i是合法的区间总数)。

  统计左长度可以判断a[i]的约数是否在前面出现过...因为a[i]<=10000,可以用数组标记一下i左边的所有数字a[k],k<i,出现的最后位置used[a[k]],然后遍历a[i]所有约数找出左长度,同理反过来求右长度。复杂度为O(nsqrt(n))。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<cstdlib>
#include<queue>
using namespace std;
#define mod 1000000007
#define LL long long
int used[10010],n;
LL a[100100],ysz[100100],ysf[100100];
int cys(LL x)
{
    int m=sqrt(1.0*x);
    int maxi=max(used[1],used[x]);
    for(int i=2;i<=m;i++)
    {
        if(x%i==0)
        {
            maxi=max(maxi,used[i]);
            maxi=max(maxi,used[x/i]);
        }
    }
    return maxi;
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        memset(used,0,sizeof(used));
        memset(ysz,0,sizeof(ysz));
        memset(ysf,0,sizeof(ysf));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            ysz[i]=i-cys(a[i]);
            used[a[i]]=i;
        }
        memset(used,0,sizeof(used));
        for(int i=1;i<=n;i++)
        {
            ysf[n-i+1]=i-cys(a[n-i+1]);
            used[a[n-i+1]]=i;
        }
        LL ans=0;
        for(int i=1;i<=n;i++)
        {
            ans=(ans+ysz[i]*ysf[i])%mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值