题意:给定一个长度为n的序列,规定f(l,r)是对于l,r范围内的某个数字a[i],都不能找到一个对应的j使得a[i]%a[j]=0,那么l,r内有多少个i,f(l,r)就是几。问所有f(l,r)的总和是多少。
直接枚举每一个数字,对于这个数字,如果这个数字是合法的i,那么向左能扩展的最大长度是多少,向右能扩展的最大长度是多少,那么i为合法的情况就是左长度*右长度(包含i且i是合法的区间总数)。
统计左长度可以判断a[i]的约数是否在前面出现过...因为a[i]<=10000,可以用数组标记一下i左边的所有数字a[k],k<i,出现的最后位置used[a[k]],然后遍历a[i]所有约数找出左长度,同理反过来求右长度。复杂度为O(nsqrt(n))。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<cstdlib>
#include<queue>
using namespace std;
#define mod 1000000007
#define LL long long
int used[10010],n;
LL a[100100],ysz[100100],ysf[100100];
int cys(LL x)
{
int m=sqrt(1.0*x);
int maxi=max(used[1],used[x]);
for(int i=2;i<=m;i++)
{
if(x%i==0)
{
maxi=max(maxi,used[i]);
maxi=max(maxi,used[x/i]);
}
}
return maxi;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
memset(used,0,sizeof(used));
memset(ysz,0,sizeof(ysz));
memset(ysf,0,sizeof(ysf));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
ysz[i]=i-cys(a[i]);
used[a[i]]=i;
}
memset(used,0,sizeof(used));
for(int i=1;i<=n;i++)
{
ysf[n-i+1]=i-cys(a[n-i+1]);
used[a[n-i+1]]=i;
}
LL ans=0;
for(int i=1;i<=n;i++)
{
ans=(ans+ysz[i]*ysf[i])%mod;
}
printf("%lld\n",ans);
}
return 0;
}