给定一个数字串s和数字d,问有多少种不同的排列是d的倍数..
开始想直接DP,但是考虑到可能无法去重
所以状压DP,每次找到一个没有取的数字,加上去...
然后根据前面lightoj1060学的康拓逆展开...
重复元素再除一下阶乘OK过样例提交TLE..
优化了一个地方时间缩短一半。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 1000007
#define inf 0x3f3f3f3f
int dp[(1<<11)+10][1002];
char s[12];
int num[12],f[12];
int main()
{
int t;
scanf("%d",&t);
f[0]=1;
for(int i=1;i<=10;i++) f[i]=f[i-1]*i;
for(int cas=1;cas<=t;cas++)
{
int d,n;
scanf("%s %d",s,&d);
memset(num,0,sizeof(num));
n=strlen(s);
for(int i=0;i<n;i++)
{
num[s[i]-'0']++;
s[i]=s[i]-'0';
}
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=0;i<(1<<n);i++)
{
for(int j=0;j<n;j++)
{
if(i&(1<<j)) continue;
for(int k=0;k<d;k++)
{
if(dp[i][k]==0) continue;//优化
dp[i|(1<<j)][(k*10+s[j])%d]+=dp[i][k];
}
}
}
int ans=dp[(1<<n)-1][0];
for(int i=0;i<10;i++)
{
ans=ans/f[num[i]];
}
printf("Case %d: %d\n",cas,ans);
}
return 0;
}