函数、导数与微分 高数复习笔记

1.函数

1.1 定义

函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作

y = f ( x ) , x ∈ X y=f\left( x\right) ,x\in X y=f(x),xX

其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。

函数的两要素是指函数的定义域和值域。

定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。

值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。

常见函数类型

  1. 线性函数:

    f ( x ) = a x + b f(x)=ax+b f(x)=ax+b

    ,其中 a 和 b 是常数。

  2. 多项式函数:

    f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_{n}x^{n}+a_{n−1}x^{n−1}+⋯+a_{1}x+a_{0} f(x)=anxn+an1xn1++a1x+a0

    ,其中 ai是常数。

  3. 指数函数:

    f ( x ) = a x f(x)=a^{x} f(x)=ax

    ,其中 a>0 且 a≠1。

  4. 对数函数:

    f ( x ) = l o g ⁡ a ( x ) f(x)=log_{⁡a}(x) f(x)=loga(x)

    ,其中 a>0 且 a≠1。

  5. 三角函数
  • 正弦函数(sin)
    s i n ⁡ ( θ ) = 对边 斜边 sin⁡(θ)=\dfrac{对边}{斜边} sin(θ)=斜边对边

  • 余弦函数(cos)
    c o s ⁡ ( θ ) = 邻边 斜边 cos⁡(θ)=\dfrac{邻边}{斜边} cos(θ)=斜边邻边

  • 正切函数(tan)
    t a n ⁡ ( θ ) = 对边 邻边 = s i n ⁡ ( θ ) c o s ⁡ ( θ ) tan⁡(θ)=\dfrac{对边}{邻边}=\dfrac{sin⁡(θ)}{cos⁡(θ)} tan(θ)=邻边对边=cos(θ)sin(θ)

  1. 基本关系

1.2.1 毕达哥拉斯恒等式
s i n ⁡ 2 ( θ ) + c o s ⁡ 2 ( θ ) = 1 sin⁡^2(θ)+cos⁡^2(θ)=1 sin2(θ)+cos2(θ)=1

这个恒等式可以从直角三角形的勾股定理推导出来。

1.2.2 商数关系
t a n ⁡ ( θ ) = s i n ⁡ ( θ ) c o s ⁡ ( θ ) c o t ⁡ ( θ ) = c o s ⁡ ( θ ) s i n ⁡ ( θ ) = 1 t a n ⁡ ( θ ) tan⁡(θ)=\dfrac{sin⁡(θ)}{cos⁡(θ)}\\ cot⁡(θ)=\dfrac{cos⁡(θ)}{sin⁡(θ)}=\dfrac{1}{tan⁡(θ)} tan(θ)=cos(θ)sin(θ)cot(θ)=sin(θ)cos(θ)=tan(θ)1

1.2.3 倒数关系
s e c ⁡ ( θ ) = 1 c o s ⁡ ( θ ) c s c ⁡ ( θ ) = 1 s i n ⁡ ( θ ) sec⁡(θ)=\dfrac{1}{cos⁡(θ)}\\ csc⁡(θ)=\dfrac{1}{sin⁡(θ)} sec(θ)=cos(θ)1csc(θ)=sin(θ)1

1.3. 三角函数的周期性

  • 正弦函数和余弦函数
    s i n ⁡ ( θ + 2 k π ) = s i n ⁡ ( θ ) sin⁡(θ+2kπ)=sin⁡(θ) sin(θ+2)=sin(θ)

    c o s ⁡ ( θ + 2 k π ) = c o s ⁡ ( θ ) cos⁡(θ+2kπ)=cos⁡(θ) cos(θ+2)=cos(θ)

    其中,k 是任意整数。

  • 正切函数
    t a n ⁡ ( θ + k π ) = t a n ⁡ ( θ ) tan⁡(θ+kπ)=tan⁡(θ) tan(θ+)=tan(θ)
    其中,k 是任意整数。

1.4. 三角函数的对称性

  • 正弦函数
    s i n ⁡ ( − θ ) = − s i n ⁡ ( θ ) sin⁡(−θ)=−sin⁡(θ) sin(θ)=sin(θ)

  • 余弦函数
    c o s ⁡ ( − θ ) = c o s ⁡ ( θ ) cos⁡(−θ)=cos⁡(θ) cos(θ)=cos(θ)

  • 正切函数
    t a n ⁡ ( − θ ) = − t a n ⁡ ( θ ) tan⁡(−θ)=−tan⁡(θ) tan(θ)=tan(θ)

1.5. 三角函数的和差公式

  • 正弦函数的和差公式
    s i n ⁡ ( A ± B ) = s i n ⁡ ( A ) c o s ⁡ ( B ) ± c o s ⁡ ( A ) s i n ⁡ ( B ) sin⁡(A±B)=sin⁡(A)cos⁡(B)±cos⁡(A)sin⁡(B) sin(A±B)=sin(A)cos(B)±cos(A)sin(B)

  • 余弦函数的和差公式
    c o s ⁡ ( A ± B ) = c o s ⁡ ( A ) c o s ⁡ ( B ) ∓ s i n ⁡ ( A ) s i n ⁡ ( B ) cos⁡(A±B)=cos⁡(A)cos⁡(B)∓sin⁡(A)sin⁡(B) cos(A±B)=cos(A)cos(B)sin(A)sin(B)

  • 正切函数的和差公式
    t a n ⁡ ( A ± B ) = t a n ⁡ ( A ) ± t a n ⁡ ( B ) 1 ∓ t a n ⁡ ( A ) t a n ⁡ ( B ) tan⁡(A±B)=\dfrac{tan⁡(A)±tan⁡(B)}{1∓tan⁡(A)tan⁡(B)} tan(A±B)=1tan(A)tan(B)tan(A)±tan(B)

1.6. 三角函数的倍角公式

  • 正弦函数的倍角公式
    s i n ⁡ ( 2 θ ) = 2 s i n ⁡ ( θ ) c o s ⁡ ( θ ) sin⁡(2θ)=2sin⁡(θ)cos⁡(θ) sin(2θ)=2sin(θ)cos(θ)

  • 余弦函数的倍角公式
    c o s ⁡ ( 2 θ ) = c o s ⁡ 2 ( θ ) − s i n ⁡ 2 ( θ ) = 2 c o s ⁡ 2 ( θ ) − 1 = 1 − 2 s i n ⁡ 2 ( θ ) cos⁡(2θ)=cos⁡^2(θ)−sin⁡^2(θ)=2cos⁡^2(θ)−1=1−2sin⁡^2(θ) cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)

  • 正切函数的倍角公式
    t a n ⁡ ( 2 θ ) = 2 t a n ⁡ ( θ ) 1 − t a n ⁡ 2 ( θ ) tan⁡(2θ)=\dfrac{2tan⁡(θ)}{1−tan⁡^2(θ)} tan(2θ)=1tan2(θ)2tan(θ)

1.7. 三角函数的半角公式

  • 正弦函数的半角公式
    s i n ⁡ ( θ 2 ) = ± 1 − c o s ⁡ ( θ ) 2 sin⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{2}} sin(2θ)=±21cos(θ)

  • 余弦函数的半角公式
    c o s ⁡ ( θ 2 ) = ± 1 + c o s ⁡ ( θ ) 2 cos⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1+cos⁡(θ)}{2}} cos(2θ)=±21+cos(θ)

  • 正切函数的半角公式
    t a n ⁡ ( θ 2 ) = ± 1 − c o s ⁡ ( θ ) 1 + c o s ⁡ ( θ ) tan⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{1+cos⁡(θ)}} tan(2θ)=±1+cos(θ)1cos(θ)

1.2函数的特性

1.2.1 有界性

上界:存在一个实数k1,使得
∃ k 1 , f ( x ) ≤ k \exists k_{1},f(x) \leq k k1,f(x)k
下界:存在一个实数k2,使得
∃ k 2 , f ( x ) ≥ k \exists k_{2},f(x) \geq k k2,f(x)k
注:特殊符号说明:
∀ :任给一个数, ∃ :存在一个数 \forall :任给一个数,\exists:存在一个数 :任给一个数,:存在一个数
有界:

一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
m ≤ f ( x ) ≤ M m≤f(x)≤M mf(x)M
其中:

  • M 称为函数的上界。
  • m 称为函数的下界。

一个函数有界的充要条件:既有上界,又有下界。

分类

根据函数的有界性,可以分为以下几种情况:

  1. 有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
  2. 无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.2.2 单调性

定义

一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:

  • 单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
  • 严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
  • 单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
  • 严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
1.2.3 奇偶性

定义

一个函数 f(x) 在其定义域 D 上称为:

  • 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
  • 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性

定义

一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。

1.2.极限

1.2.1 数列极限

定义

一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:
∣ a n − L ∣ < ϵ ∣a_n−L∣<ϵ anL∣<ϵ
换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:
lim ⁡ n → ∞ a n = L \lim _{n\rightarrow \infty }a_{n}=L nliman=L
如果数列不收敛于任何有限值,则称该数列为发散的。

理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质

  1. 唯一性:如果数列 {an}收敛,则其极限是唯一的。

  2. 有界性:如果数列 {an}收敛,则它是有界的。

  3. 保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
    lim ⁡ n → ∞ a n ≤ lim ⁡ n → ∞ b n \lim _{n\rightarrow \infty }a_{n}\leq \lim _{n\rightarrow \infty }b_{n} nlimannlimbn

  4. 四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
    极限的判定

  5. 直接法

    • 通过分析数列的通项公式,直接计算其极限。

    • 例如,数列
      { a n } = ( n 2 + 1 2 n 2 + 3 ) \{a_{n}\}=(\dfrac{n^{2}+1}{2n^{2}+3}) {an}=(2n2+3n2+1)
      ,计算其极限:
      lim ⁡ n → ∞ n 2 + 1 2 n 2 + 3 = lim ⁡ n → ∞ 1 + 1 n 2 2 + 3 n 2 = 1 2 \lim _{n\rightarrow \infty }\dfrac{n^{2}+1}{2n^{2}+3}=\lim _{n\rightarrow \infty }\dfrac{1+\dfrac{1}{n^{2}}}{2+\dfrac{3}{n^2}}=\dfrac{1}{2} nlim2n2+3n2+1=nlim2+n231+n21=21

  6. 夹逼定理

    • 如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
      lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = L \lim _{n\rightarrow \infty }a_{n}= \lim _{n\rightarrow \infty }c_{n}=L nliman=nlimcn=L
      ,则
      lim ⁡ n → ∞ b n = L \lim _{n\rightarrow \infty }b_{n}=L nlimbn=L

1.2.3 无穷大与无穷小

  1. 无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
    lim ⁡ x → a f ( x ) = ∞ \lim _{x\rightarrow a }f(x)=\infty xalimf(x)=
    无穷大分为正无穷大和负无穷大。

    无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;

    无穷大乘无穷大肯定为无穷大。

  2. 无穷小:如果
    lim ⁡ x → a f ( x ) = 0 或 lim ⁡ x → ∞ f ( x ) = 0 \lim _{x\rightarrow a }f(x)=0或\lim _{x\rightarrow \infty }f(x)=0 xalimf(x)=0xlimf(x)=0
    ,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。

    运算法则:

    1.无穷小加、减、乘无穷小都是无穷小

    2.有界函数与无穷小的乘积也为无穷小

    3.常数与无穷小的乘积也为无穷小

    4.无穷小除以无穷小不确定。

    注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别

    负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。

如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。

  1. 高阶无穷小

    设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。

    如果
    lim ⁡ x → a α β = 0 \lim _{x\rightarrow a }\dfrac{α}{β}=0 xalimβα=0
    ,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。

    如:
    lim ⁡ x → 0 x 2 3 x = 0 \lim _{x\rightarrow 0 }\dfrac{x^{2}}{3x}=0 x0lim3xx2=0
    x2比3x收敛速度快,则x2是3x的高阶无穷小,记作
    x 2 = o ( 3 x ) x^{2}=o(3x) x2=o(3x)

  2. 低阶无穷小

设 α 和 β 是两个无穷小量。

如果
lim ⁡ x → a α β = ∞ \lim _{x\rightarrow a }\dfrac{α}{β}=\infty xalimβα=
,则称 α 是 β 的低阶无穷小。

  1. 同阶无穷小

    设 α 和 β 是两个无穷小量。

    如果
    lim ⁡ x → a α β = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β}=c(其中 c 是一个非零常数) xalimβα=c(其中c是一个非零常数)
    ,则称 α 和 β 是同阶无穷小。

  2. 等价无穷小

    • 设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。

    • 如果
      lim ⁡ x → a α β = 1 \lim _{x\rightarrow a }\dfrac{α}{β}=1 xalimβα=1
      ,则称 α 和 β 是等价无穷小,记作 α∼β。

  3. k阶无穷小

    • 设 α和 β 是两个无穷小量,且
      β = o ( x k ) 当 x → 0 β=o(x^{k}) 当 x→0 β=o(xk)x0

    • 如果
      lim ⁡ x → a α β k = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β^{k}}=c(其中 c 是一个非零常数) xalimβkα=c(其中c是一个非零常数)
      ,则称 α 是 β 的 k 阶无穷小。

1.2.4 无穷大极限

函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。

具体分类:

  1. 当 x→+∞ 时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
      lim ⁡ x → + ∞ f ( x ) = A \lim _{x\rightarrow +\infty }f(x)=A x+limf(x)=A
  2. 当 x→−∞时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
      lim ⁡ x → − ∞ f ( x ) = A \lim _{x\rightarrow -\infty }f(x)=A xlimf(x)=A

2.导数

1.2.1 导数定义

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
f ’ ( x 0 ) 或 d y d x ∣ x = x 0 f’(x_{0})或\dfrac{dy}{dx}|_{x=x_{0}} f(x0)dxdyx=x0
即:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f′(x_{0})=\lim _{Δx\rightarrow 0}\dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} f(x0)=Δx0limΔxf(x0+Δx)f(x0)
其中:

  • Δx 是一个很小的增量,表示 x 的变化量。

  • f ( x 0 + Δ x ) f(x_{0} + Δx) f(x0+Δx)

    是 x 在 x0 点增加 Δx 后的函数值。

  • f(x0) 是 x 在 x0 点的函数值。

  • f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)f(x0)

    是函数在 x=x0 处的平均变化率。

  • lim ⁡ Δ x → 0 \lim _{Δx\rightarrow 0} Δx0lim

    表示当 Δx 趋近于 0 时的极限。

  • 平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是
    f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)f(x0)
    。这个比值表示函数在这段区间内的平均变化速度。

  • 瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。

2.导数

2.1.导数的几何意义

2.1.1 切线

由导数定义可知,f(x)在点 (a,f(a))处的斜率:
f ′ ( a ) = lim ⁡ x → a f ( x ) − f ( a ) x − a f′(a)=\lim _{x\rightarrow a}\dfrac{f(x)−f(a)}{x−a} f(a)=xalimxaf(x)f(a)
所以切线方程可以表示为:
y − f ( a ) = f ′ ( a ) ( x − a ) y-f(a)=f′(a)(x-a) yf(a)=f(a)(xa)
其中:

  • y 是切线上的点的纵坐标。
  • f(a) 是函数在点 x=a 处的值。
  • f′(a) 是函数在点 x=a 处的导数,即切线的斜率。
  • x 是切线上的点的横坐标。
  • a 是切点处的横坐标。

化简切线方程:
y − f ( a ) = f ′ ( a ) ( x − a ) = > y = f ′ ( a ) x − a f ′ ( a ) + f ( a ) y-f(a)=f′(a)(x-a)=>y=f'(a)x-af'(a)+f(a) yf(a)=f(a)(xa)=>y=f(a)xaf(a)+f(a)
将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

2.1.2 法线

是与切线垂直的直线。切线的斜率为f’(a),则法线的斜率为
− 1 f ′ ( a ) -\dfrac{1}{f'(a)} f(a)1
法线方程的一般形式是:
y − f ( a ) = − 1 f ′ ( a ) ( x − a ) y−f(a)=−\dfrac{1}{f′(a)}(x−a) yf(a)=f(a)1(xa)

其中:

  • y 是法线上的点的纵坐标。
  • f(a是函数在点 x=a处的值。
  • f′(a)是函数在点 x=a处的导数,即切线的斜率。
  • x 是法线上的点的横坐标。
  • a 是法线点处的横坐标。

化简法线方程:
将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

2.2.可导与连续的关系

2.2.1 定义

连续性

一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:
lim ⁡ x → a f ( x ) = f ( a ) 或者 lim ⁡ h → 0 f ( a + h ) − f ( a ) = 0 \lim _{x\rightarrow a}f(x)=f(a)或者\lim _{h\rightarrow 0}f(a+h)-f(a)=0 xalimf(x)=f(a)或者h0limf(a+h)f(a)=0
这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。

可导性

一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:
f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h} f(a)=h0limhf(a+h)f(a)
这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。

所以从连续和可导定义看出,可导的条件比连续的条件更严格。

2.2.2 定理

1.可导性蕴含连续性

如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。

证明:如果函数 f(x) 在点 x=a处可导,则
f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h} f(a)=h0limhf(a+h)f(a)
我们要证f(x)在点 x=a 处连续,需要证明
lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)
变换上述等式:
lim ⁡ x → a ( f ( x ) − f ( a ) ) = lim ⁡ x → a ( f ( x ) − f ( a ) x − a ( x − a ) ) = lim ⁡ x → a f ( x ) − f ( a ) x − a . lim ⁡ x → a ( x − a ) = f ′ ( a ) . 0 = 0 \lim _{x\rightarrow a}(f(x)-f(a))=\lim _{x\rightarrow a}(\dfrac{f(x)-f(a)}{x-a}(x-a))=\lim _{x\rightarrow a}\dfrac{f(x)-f(a)}{x-a}.\lim _{x\rightarrow a}(x-a)=f'(a).0=0 xalim(f(x)f(a))=xalim(xaf(x)f(a)(xa))=xalimxaf(x)f(a).xalim(xa)=f(a).0=0
所以
lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)
2.连续性不一定蕴含可导性

反例:考虑函数 f(x)=∣x|在 x=0处是否可导。

证明:

连续性:
lim ⁡ x → 0 ∣ x ∣ = 0 = f ( 0 ) \lim _{x\rightarrow 0}|x|=0=f(0) x0limx=0=f(0)
函数是连续的

可导性:

左导数:
f − ′ ( 0 ) = lim ⁡ h → 0 − f ( h + 0 ) − f ( h ) h = lim ⁡ h → 0 − − h − 0 h = − 1 f_{-}'(0)=\lim _{h\rightarrow 0^{-}}\dfrac{f(h+0)-f(h)}{h}=\lim _{h\rightarrow 0^{-}}\dfrac{-h-0}{h}=-1 f(0)=h0limhf(h+0)f(h)=h0limhh0=1
右导数:
f + ′ ( 0 ) = lim ⁡ h → 0 + f ( 0 + h ) − f ( h ) h = lim ⁡ h → 0 + h − 0 h = 1 f_{+}'(0)=\lim _{h\rightarrow 0^{+}}\dfrac{f(0+h)-f(h)}{h}=\lim _{h\rightarrow 0^{+}}\dfrac{h-0}{h}=1 f+(0)=h0+limhf(0+h)f(h)=h0+limhh0=1
左右导数不相等,所以函数不是可导的。

2.3.求导公式

2.3.1 求导规则

  1. 常数规则
    d d x ( c ) = 0 \dfrac{d}{dx}(c)=0 dxd(c)=0

    其中 c 是常数。

  2. 幂函数规则
    d d x ( x n ) = n x n − 1 \dfrac{d}{dx}(x^{n})=nx^{n−1} dxd(xn)=nxn1

    其中 n 是任意实数。

  3. 常数倍规则
    d d x ( c ⋅ f ( x ) ) = c ⋅ f ′ ( x ) 或 ( c v ) ′ = c v ′ \dfrac{d}{dx}(c⋅f(x))=c⋅f′(x)或(cv)'=cv' dxd(cf(x))=cf(x)(cv)=cv

    其中 c 是常数。

  4. 和差规则
    d d x ( f ( x ) ± g ( x ) ) = f ′ ( x ) ± g ′ ( x ) 或 ( u ± v ) ′ = u ′ ± v ′ \dfrac{d}{dx}(f(x)±g(x))=f′(x)±g′(x)或(u±v)'=u'±v' dxd(f(x)±g(x))=f(x)±g(x)(u±v)=u±v

  5. 乘积规则
    d d x ( f ( x ) ⋅ g ( x ) ) = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) 或 ( u v ) ′ = u ′ v + u v ′ \dfrac{d}{dx}(f(x)⋅g(x))=f′(x)⋅g(x)+f(x)⋅g′(x)或(uv)'=u'v+uv' dxd(f(x)g(x))=f(x)g(x)+f(x)g(x)(uv)=uv+uv

  6. 商规则
    d d x ( f ( x ) g ( x ) ) = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) [ g ( x ) ] 2 或 ( u v ) ′ = u ′ v − u v ′ v 2 \dfrac{d}{dx}(\dfrac{f(x)}{g(x)})=\dfrac{f′(x)⋅g(x)−f(x)⋅g′(x)}{[g(x)]^{2}}或(\dfrac{u}{v})'=\dfrac{u'v-uv'}{v^{2}} dxd(g(x)f(x))=[g(x)]2f(x)g(x)f(x)g(x)(vu)=v2uvuv

    其中 g(x)≠0。

  7. 链式法则(复合函数求导):
    d d x ( f ( g ( x ) ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) 或 d y d x = d y d u . d u d x \dfrac{d}{dx}(f(g(x)))=f′(g(x))⋅g′(x)或\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx} dxd(f(g(x)))=f(g(x))g(x)dxdy=dudy.dxdu

2.3.2 常见函数的求导公式

  1. 指数函数
    d d x ( e x ) = e x \dfrac{d}{dx}(e^{x})=e^{x} dxd(ex)=ex

    d d x ( a x ) = a x l n ⁡ ( a ) \dfrac{d}{dx}(a^{x})=a^{x}ln⁡(a) dxd(ax)=axln(a)

    其中 a>0且 a≠1。

  2. 对数函数
    d d x ( l n ⁡ x ) = 1 x \dfrac{d}{dx}(ln⁡x)=\dfrac{1}{x} dxd(lnx)=x1

    d d x ( l o g ⁡ a ( x ) ) = 1 x l n ⁡ ( a ) \dfrac{d}{dx}(log⁡_{a}(x))=\dfrac{1}{xln⁡(a)} dxd(loga(x))=xln(a)1

    其中 a>0且 a≠1。

  3. 三角函数
    d d x ( s i n ⁡ ( x ) ) = c o s ⁡ ( x ) \dfrac{d}{dx}(sin⁡(x))=cos⁡(x) dxd(sin(x))=cos(x)

    d d x ( c o s ⁡ ( x ) ) = − s i n ⁡ ( x ) \dfrac{d}{dx}(cos⁡(x))=−sin⁡(x) dxd(cos(x))=sin(x)

    d d x ( t a n ⁡ ( x ) ) = s e c ⁡ 2 ( x ) = 1 c o s 2 ( x ) \dfrac{d}{dx}(tan⁡(x))=sec^{⁡2}(x)=\dfrac{1}{cos^{2}(x)} dxd(tan(x))=sec⁡2(x)=cos2(x)1

  4. 反三角函数
    d d x ( a r c s i n ⁡ ( x ) ) = 1 1 − x 2 \dfrac{d}{dx}(arcsin⁡(x))=\dfrac{1}{\sqrt{1-x^{2}}} dxd(arcsin(x))=1x2 1

    d d x ( a r c c o s ⁡ ( x ) ) = − 1 1 − x 2 \dfrac{d}{dx}(arccos⁡(x))=−\dfrac{1}{\sqrt{1-x^{2}}} dxd(arccos(x))=1x2 1

    d d x ( a r c t a n ⁡ ( x ) ) = 1 1 + x 2 \dfrac{d}{dx}(arctan⁡(x))=\dfrac{1}{1+x^{2}} dxd(arctan(x))=1+x21

2.4.高阶导数

高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作
f ′ ′ ( x ) 或 d 2 y d x 2 f''(x) 或 \dfrac{d^{2}y}{dx^{2}} f′′(x)dx2d2y
。类似地,三阶导数是对二阶导数再求导,记作
f ′ ′ ′ ( x ) 或 d 3 y d x 3 f'''(x)或 \dfrac{d^{3}y}{dx^{3}} f′′′(x)dx3d3y
,以此类推。

2.4.1定义

对于一个函数 f(x),其 n 阶导数定义为:
f ( n ) ( x ) = d n y d x n f^{(n)}(x)=\dfrac{d^{n}y}{dx^{n}} f(n)(x)=dxndny
其中 n是正整数。

高阶导数的符号表示

  • 一阶导数:
    f ′ ( x ) 或 d y d x f′(x)或 \dfrac{dy}{dx} f(x)dxdy

  • 二阶导数:
    f ′ ′ ( x ) 或 d 2 y d x 2 f''(x) 或 \dfrac{d^{2}y}{dx^{2}} f′′(x)dx2d2y

  • 三阶导数:
    f ′ ′ ′ ( x ) 或 d 3 y d x 3 f'''(x) 或 \dfrac{d^{3}y}{dx^{3}} f′′′(x)dx3d3y

  • n 阶导数:
    f ( n ) ( x ) 或 d n y d x n f^{(n)}(x)或\dfrac{d^{n}y}{dx^{n}} f(n)(x)dxndny

2.5.隐函数求导

隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
d y d x \dfrac{dy}{dx} dxdy
隐函数求导的基本步骤

  1. 对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。
  2. 使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数
  3. 通过求导得到的方程,解出 dy/dx。

2.6.参数方程求导

参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:
{ x = f ( t ) y = g ( t ) \begin{cases}x=f(t)\\ y=g(t)\end{cases} {x=f(t)y=g(t)
其中 t 是参数。我们希望求出曲线的导数 dy/dx。

参数方程求导的基本步骤

  1. 求 x 对 t 的导数:
    d x d t = f ′ ( t ) \dfrac{dx}{dt}=f′(t) dtdx=f(t)

  2. 求 y对 t 的导数:
    d y d t = g ′ ( t ) \dfrac{dy}{dt}=g′(t) dtdy=g(t)

  3. 求 dy/dx:
    d y d x = d y d t d x d t = g ′ ( t ) f ′ ( t ) \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g′(t)}{f′(t)} dxdy=dtdxdtdy=f(t)g(t)

3.微分

3.1.定义

微分是函数在某个变化过程中的改变量的线性主要部分。

若函数y=f(x)在点x处有导数f’(x)存在,则y因x的变化量△x所引起的改变量
△ y = f ( x + △ x ) − f ( x ) △y=f(x+△x)-f(x) y=f(x+x)f(x)
可以表示为
△ y = f ′ ( x ) ⋅ △ x + o ( △ x ) △y=f'(x)·△x+o(△x) y=f(x)x+o(x)
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,

微分dy可以近似地表示为
d y = f ′ ( x ) △ x dy=f'(x)△x dy=f(x)x
,它描述了函数值y随自变量x变化而变化的线性部分。‌

3.2.可微的充要条件

函数 f(x) 在点 x=a 处可微的充要条件是:

  1. 函数在点 x=a处连续:
    lim ⁡ ⁡ x → a f ( x ) = f ( a ) \lim _{⁡x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)

  2. 函数在点 x=a 处左右导数存在且相等:
    f − ′ ( a ) = f + ′ ( a ) f'_{-}(a)=f'_{+}(a) f(a)=f+(a)

简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。

3.3.微分公式与法则

根据微分定义
d y = f ′ ( x ) d x dy=f'(x)dx dy=f(x)dx
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。

3.4.微分的几何意义

假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
△ y = f ( x 0 + △ x ) − f ( x 0 ) △y=f(x_{0}+△x)-f(x_{0}) y=f(x0+x)f(x0)
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
d y = f ′ ( x 0 ) △ x dy=f'(x_{0})△x dy=f(x0)x
f’(x)是切线的斜率,dy是△y的近似值,如上图所示,所以

△ y ≈ f ′ ( x 0 ) △ x f ( x 0 + △ x ) = △ y + f ( x 0 ) ≈ f ′ ( x 0 ) △ x + f ( x 0 ) △y\approx f'(x_{0})△x\\ f(x_{0}+△x)=△y+f(x_{0})\approx f'(x_{0})△x+f(x_{0}) yf(x0)xf(x0+x)=y+f(x0)f(x0)x+f(x0)
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。

3.5.微分中值定理

3.5.1 罗尔定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b]上连续。
  2. 在开区间 (a,b)上可导。
  3. 在区间端点的函数值相等,即 f(a)=f(b)。

那么,在开区间 (a,b)内至少存在一点 c,使得:f′©=0

罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。

3.5.2 拉格朗日中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b] 上连续。
  2. 在开区间 (a,b)上可导。

那么,在开区间 (a,b) 内至少存在一点 c,使得:
f ′ ( c ) = f ( b ) − f ( a ) b − a f′(c)=\dfrac{f(b)−f(a)}{b−a} f(c)=baf(b)f(a)
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。

3.5.3 柯西中值定理

如果函数 f(x) 和 g(x) 满足以下条件:

  1. 在闭区间 [a,b]上连续。
  2. 在开区间 (a,b)上可导。
  3. 在开区间 (a,b) 内,g′(x)≠0。

那么,在开区间 (a,b) 内至少存在一点 c,使得:
f ′ ( c ) g ′ ( c ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \dfrac{f′(c)}{g′(c)}=\dfrac{f(b)−f(a)}{g(b)−g(a)} g(c)f(c)=g(b)g(a)f(b)f(a)
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。

怎么理解柯西中值定理?

将f(x)和g(x)看作是参数方程:
{ x = f ( t ) y = g ( t ) \begin{cases}x=f(t)\\ y=g(t)\end{cases} {x=f(t)y=g(t)

d y d x = d y d t d x d t = g ′ ( t ) f ′ ( t ) \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g'(t)}{f'(t)} dxdy=dtdxdtdy=f(t)g(t)

a、b端点连线的斜率为:
g ( b ) − g ( a ) f ( b ) − f ( a ) \dfrac{g(b)-g(a)}{f(b)-f(a)} f(b)f(a)g(b)g(a)
根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:
g ′ ( t ) f ′ ( t ) = g ( b ) − g ( a ) f ( b ) − f ( a ) \dfrac{g'(t)}{f'(t)}=\dfrac{g(b)-g(a)}{f(b)-f(a)} f(t)g(t)=f(b)f(a)g(b)g(a)

3.5.4 洛必达法则

洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。

设函数 f(x)和 g(x 满足以下条件:

  1. 在点 a 的某个去心邻域内可导,且 g′(x)≠0。

  2. lim ⁡ x → a f ( x ) = 0 且 lim ⁡ ⁡ x → a g ( x ) = 0 ,或者 lim ⁡ x → a f ( x ) = ± ∞ 且 lim ⁡ x → a g ( x ) = ± ∞ 。 \lim _{x\rightarrow a}f(x)=0 且 \lim _{⁡x\rightarrow a}g(x)=0,或者 \lim _{x\rightarrow a}f(x)=±∞ 且 \lim _{x\rightarrow a}g(x)=±∞。 xalimf(x)=0xalimg(x)=0,或者xalimf(x)=±xalimg(x)=±

如果
lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)} xalimg(x)f(x)
存在(或为无穷大),那么:
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim _{x\rightarrow a}\dfrac{f(x)}{g(x)}=\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)} xalimg(x)f(x)=xalimg(x)f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值