高数复习笔记

1.函数

1.1 定义

函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作

y = f ( x ) , x ∈ X y=f\left( x\right) ,x\in X y=f(x),xX

其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。

函数的两要素是指函数的定义域和值域。

定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。

值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。

常见函数类型

  1. 线性函数:

    f ( x ) = a x + b f(x)=ax+b f(x)=ax+b

    ,其中 a 和 b 是常数。

  2. 多项式函数:

    f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_{n}x^{n}+a_{n−1}x^{n−1}+⋯+a_{1}x+a_{0} f(x)=anxn+an1xn1++a1x+a0

    ,其中 ai是常数。

  3. 指数函数:

    f ( x ) = a x f(x)=a^{x} f(x)=ax

    ,其中 a>0 且 a≠1。

  4. 对数函数:

    f ( x ) = l o g ⁡ a ( x ) f(x)=log_{⁡a}(x) f(x)=loga(x)

    ,其中 a>0 且 a≠1。

  5. 三角函数
  • 正弦函数(sin)
    s i n ⁡ ( θ ) = 对边 斜边 sin⁡(θ)=\dfrac{对边}{斜边} sin(θ)=斜边对边

  • 余弦函数(cos)
    c o s ⁡ ( θ ) = 邻边 斜边 cos⁡(θ)=\dfrac{邻边}{斜边} cos(θ)=斜边邻边

  • 正切函数(tan)
    t a n ⁡ ( θ ) = 对边 邻边 = s i n ⁡ ( θ ) c o s ⁡ ( θ ) tan⁡(θ)=\dfrac{对边}{邻边}=\dfrac{sin⁡(θ)}{cos⁡(θ)} tan(θ)=邻边对边=cos(θ)sin(θ)

  1. 基本关系

1.2.1 毕达哥拉斯恒等式
s i n ⁡ 2 ( θ ) + c o s ⁡ 2 ( θ ) = 1 sin⁡^2(θ)+cos⁡^2(θ)=1 sin2(θ)+cos2(θ)=1

这个恒等式可以从直角三角形的勾股定理推导出来。

1.2.2 商数关系
t a n ⁡ ( θ ) = s i n ⁡ ( θ ) c o s ⁡ ( θ ) c o t ⁡ ( θ ) = c o s ⁡ ( θ ) s i n ⁡ ( θ ) = 1 t a n ⁡ ( θ ) tan⁡(θ)=\dfrac{sin⁡(θ)}{cos⁡(θ)}\\ cot⁡(θ)=\dfrac{cos⁡(θ)}{sin⁡(θ)}=\dfrac{1}{tan⁡(θ)} tan(θ)=cos(θ)sin(θ)cot(θ)=sin(θ)cos(θ)=tan(θ)1

1.2.3 倒数关系
s e c ⁡ ( θ ) = 1 c o s ⁡ ( θ ) c s c ⁡ ( θ ) = 1 s i n ⁡ ( θ ) sec⁡(θ)=\dfrac{1}{cos⁡(θ)}\\ csc⁡(θ)=\dfrac{1}{sin⁡(θ)} sec(θ)=cos(θ)1csc(θ)=sin(θ)1

1.3. 三角函数的周期性

  • 正弦函数和余弦函数
    s i n ⁡ ( θ + 2 k π ) = s i n ⁡ ( θ ) sin⁡(θ+2kπ)=sin⁡(θ) sin(θ+2)=sin(θ)

    c o s ⁡ ( θ + 2 k π ) = c o s ⁡ ( θ ) cos⁡(θ+2kπ)=cos⁡(θ) cos(θ+2)=cos(θ)

    其中,k 是任意整数。

  • 正切函数
    t a n ⁡ ( θ + k π ) = t a n ⁡ ( θ ) tan⁡(θ+kπ)=tan⁡(θ) tan(θ+)=tan(θ)
    其中,k 是任意整数。

1.4. 三角函数的对称性

  • 正弦函数
    s i n ⁡ ( − θ ) = − s i n ⁡ ( θ ) sin⁡(−θ)=−sin⁡(θ) sin(θ)=sin(θ)

  • 余弦函数
    c o s ⁡ ( − θ ) = c o s ⁡ ( θ ) cos⁡(−θ)=cos⁡(θ) cos(θ)=cos(θ)

  • 正切函数
    t a n ⁡ ( − θ ) = − t a n ⁡ ( θ ) tan⁡(−θ)=−tan⁡(θ) tan(θ)=tan(θ)

1.5. 三角函数的和差公式

  • 正弦函数的和差公式
    s i n ⁡ ( A ± B ) = s i n ⁡ ( A ) c o s ⁡ ( B ) ± c o s ⁡ ( A ) s i n ⁡ ( B ) sin⁡(A±B)=sin⁡(A)cos⁡(B)±cos⁡(A)sin⁡(B) sin(A±B)=sin(A)cos(B)±cos(A)sin(B)

  • 余弦函数的和差公式
    c o s ⁡ ( A ± B ) = c o s ⁡ ( A ) c o s ⁡ ( B ) ∓ s i n ⁡ ( A ) s i n ⁡ ( B ) cos⁡(A±B)=cos⁡(A)cos⁡(B)∓sin⁡(A)sin⁡(B) cos(A±B)=cos(A)cos(B)sin(A)sin(B)

  • 正切函数的和差公式
    t a n ⁡ ( A ± B ) = t a n ⁡ ( A ) ± t a n ⁡ ( B ) 1 ∓ t a n ⁡ ( A ) t a n ⁡ ( B ) tan⁡(A±B)=\dfrac{tan⁡(A)±tan⁡(B)}{1∓tan⁡(A)tan⁡(B)} tan(A±B)=1tan(A)tan(B)tan(A)±tan(B)

1.6. 三角函数的倍角公式

  • 正弦函数的倍角公式
    s i n ⁡ ( 2 θ ) = 2 s i n ⁡ ( θ ) c o s ⁡ ( θ ) sin⁡(2θ)=2sin⁡(θ)cos⁡(θ) sin(2θ)=2sin(θ)cos(θ)

  • 余弦函数的倍角公式
    c o s ⁡ ( 2 θ ) = c o s ⁡ 2 ( θ ) − s i n ⁡ 2 ( θ ) = 2 c o s ⁡ 2 ( θ ) − 1 = 1 − 2 s i n ⁡ 2 ( θ ) cos⁡(2θ)=cos⁡^2(θ)−sin⁡^2(θ)=2cos⁡^2(θ)−1=1−2sin⁡^2(θ) cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)

  • 正切函数的倍角公式
    t a n ⁡ ( 2 θ ) = 2 t a n ⁡ ( θ ) 1 − t a n ⁡ 2 ( θ ) tan⁡(2θ)=\dfrac{2tan⁡(θ)}{1−tan⁡^2(θ)} tan(2θ)=1tan2(θ)2tan(θ)

1.7. 三角函数的半角公式

  • 正弦函数的半角公式
    s i n ⁡ ( θ 2 ) = ± 1 − c o s ⁡ ( θ ) 2 sin⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{2}} sin(2θ)=±21cos(θ)

  • 余弦函数的半角公式
    c o s ⁡ ( θ 2 ) = ± 1 + c o s ⁡ ( θ ) 2 cos⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1+cos⁡(θ)}{2}} cos(2θ)=±21+cos(θ)

  • 正切函数的半角公式
    t a n ⁡ ( θ 2 ) = ± 1 − c o s ⁡ ( θ ) 1 + c o s ⁡ ( θ ) tan⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{1+cos⁡(θ)}} tan(2θ)=±1+cos(θ)1cos(θ)

1.2函数的特性

1.2.1 有界性

上界:存在一个实数k1,使得
∃ k 1 , f ( x ) ≤ k \exists k_{1},f(x) \leq k k1,f(x)k
下界:存在一个实数k2,使得
∃ k 2 , f ( x ) ≥ k \exists k_{2},f(x) \geq k k2,f(x)k
注:特殊符号说明:
∀ :任给一个数, ∃ :存在一个数 \forall :任给一个数,\exists:存在一个数 :任给一个数,:存在一个数
有界:

一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
m ≤ f ( x ) ≤ M m≤f(x)≤M mf(x)M
其中:

  • M 称为函数的上界。
  • m 称为函数的下界。

一个函数有界的充要条件:既有上界,又有下界。

分类

根据函数的有界性,可以分为以下几种情况:

  1. 有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
  2. 无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.2.2 单调性

定义

一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:

  • 单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
  • 严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
  • 单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
  • 严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
1.2.3 奇偶性

定义

一个函数 f(x) 在其定义域 D 上称为:

  • 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
  • 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性

定义

一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。

2.极限

2.1 数列极限

定义

一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:
∣ a n − L ∣ < ϵ ∣a_n−L∣<ϵ anL∣<ϵ
换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:
lim ⁡ n → ∞ a n = L \lim _{n\rightarrow \infty }a_{n}=L nliman=L
如果数列不收敛于任何有限值,则称该数列为发散的。

理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质

  1. 唯一性:如果数列 {an}收敛,则其极限是唯一的。

  2. 有界性:如果数列 {an}收敛,则它是有界的。

  3. 保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
    lim ⁡ n → ∞ a n ≤ lim ⁡ n → ∞ b n \lim _{n\rightarrow \infty }a_{n}\leq \lim _{n\rightarrow \infty }b_{n} nlimannlimbn

  4. 四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
    极限的判定

  5. 直接法

    • 通过分析数列的通项公式,直接计算其极限。

    • 例如,数列
      { a n } = ( n 2 + 1 2 n 2 + 3 ) \{a_{n}\}=(\dfrac{n^{2}+1}{2n^{2}+3}) {an}=(2n2+3n2+1)
      ,计算其极限:
      lim ⁡ n → ∞ n 2 + 1 2 n 2 + 3 = lim ⁡ n → ∞ 1 + 1 n 2 2 + 3 n 2 = 1 2 \lim _{n\rightarrow \infty }\dfrac{n^{2}+1}{2n^{2}+3}=\lim _{n\rightarrow \infty }\dfrac{1+\dfrac{1}{n^{2}}}{2+\dfrac{3}{n^2}}=\dfrac{1}{2} nlim2n2+3n2+1=nlim2+n231+n21=21

  6. 夹逼定理

    • 如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
      lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = L \lim _{n\rightarrow \infty }a_{n}= \lim _{n\rightarrow \infty }c_{n}=L nliman=nlimcn=L
      ,则
      lim ⁡ n → ∞ b n = L \lim _{n\rightarrow \infty }b_{n}=L nlimbn=L

2.3 无穷大与无穷小

  1. 无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
    lim ⁡ x → a f ( x ) = ∞ \lim _{x\rightarrow a }f(x)=\infty xalimf(x)=
    无穷大分为正无穷大和负无穷大。

    无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;

    无穷大乘无穷大肯定为无穷大。

  2. 无穷小:如果
    lim ⁡ x → a f ( x ) = 0 或 lim ⁡ x → ∞ f ( x ) = 0 \lim _{x\rightarrow a }f(x)=0或\lim _{x\rightarrow \infty }f(x)=0 xalimf(x)=0xlimf(x)=0
    ,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。

    运算法则:

    1.无穷小加、减、乘无穷小都是无穷小

    2.有界函数与无穷小的乘积也为无穷小

    3.常数与无穷小的乘积也为无穷小

    4.无穷小除以无穷小不确定。

    注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别

    负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。

如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。

  1. 高阶无穷小

    设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。

    如果
    lim ⁡ x → a α β = 0 \lim _{x\rightarrow a }\dfrac{α}{β}=0 xalimβα=0
    ,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。

    如:
    lim ⁡ x → 0 x 2 3 x = 0 \lim _{x\rightarrow 0 }\dfrac{x^{2}}{3x}=0 x0lim3xx2=0
    x2比3x收敛速度快,则x2是3x的高阶无穷小,记作
    x 2 = o ( 3 x ) x^{2}=o(3x) x2=o(3x)

  2. 低阶无穷小

设 α 和 β 是两个无穷小量。

如果
lim ⁡ x → a α β = ∞ \lim _{x\rightarrow a }\dfrac{α}{β}=\infty xalimβα=
,则称 α 是 β 的低阶无穷小。

  1. 同阶无穷小

    设 α 和 β 是两个无穷小量。

    如果
    lim ⁡ x → a α β = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β}=c(其中 c 是一个非零常数) xalimβα=c(其中c是一个非零常数)
    ,则称 α 和 β 是同阶无穷小。

  2. 等价无穷小

    • 设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。

    • 如果
      lim ⁡ x → a α β = 1 \lim _{x\rightarrow a }\dfrac{α}{β}=1 xalimβα=1
      ,则称 α 和 β 是等价无穷小,记作 α∼β。

  3. k阶无穷小

    • 设 α和 β 是两个无穷小量,且
      β = o ( x k ) 当 x → 0 β=o(x^{k}) 当 x→0 β=o(xk)x0

    • 如果
      lim ⁡ x → a α β k = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β^{k}}=c(其中 c 是一个非零常数) xalimβkα=c(其中c是一个非零常数)
      ,则称 α 是 β 的 k 阶无穷小。

2.4 无穷大极限

函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。

具体分类:

  1. 当 x→+∞ 时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
      lim ⁡ x → + ∞ f ( x ) = A \lim _{x\rightarrow +\infty }f(x)=A x+limf(x)=A
  2. 当 x→−∞时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
      lim ⁡ x → − ∞ f ( x ) = A \lim _{x\rightarrow -\infty }f(x)=A xlimf(x)=A

2.导数

2.1 导数定义

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
f ’ ( x 0 ) 或 d y d x ∣ x = x 0 f’(x_{0})或\dfrac{dy}{dx}|_{x=x_{0}} f(x0)dxdyx=x0
即:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f′(x_{0})=\lim _{Δx\rightarrow 0}\dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} f(x0)=Δx0limΔxf(x0+Δx)f(x0)
其中:

  • Δx 是一个很小的增量,表示 x 的变化量。

  • f ( x 0 + Δ x ) f(x_{0} + Δx) f(x0+Δx)

    是 x 在 x0 点增加 Δx 后的函数值。

  • f(x0) 是 x 在 x0 点的函数值。

  • f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)f(x0)

    是函数在 x=x0 处的平均变化率。

  • lim ⁡ Δ x → 0 \lim _{Δx\rightarrow 0} Δx0lim

    表示当 Δx 趋近于 0 时的极限。

  • 平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是
    f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)f(x0)
    。这个比值表示函数在这段区间内的平均变化速度。

  • 瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。

2.2.导数的几何意义

2.2.1 切线

由导数定义可知,f(x)在点 (a,f(a))处的斜率:
f ′ ( a ) = lim ⁡ x → a f ( x ) − f ( a ) x − a f′(a)=\lim _{x\rightarrow a}\dfrac{f(x)−f(a)}{x−a} f(a)=xalimxaf(x)f(a)
所以切线方程可以表示为:
y − f ( a ) = f ′ ( a ) ( x − a ) y-f(a)=f′(a)(x-a) yf(a)=f(a)(xa)
其中:

  • y 是切线上的点的纵坐标。
  • f(a) 是函数在点 x=a 处的值。
  • f′(a) 是函数在点 x=a 处的导数,即切线的斜率。
  • x 是切线上的点的横坐标。
  • a 是切点处的横坐标。

化简切线方程:
y − f ( a ) = f ′ ( a ) ( x − a ) = > y = f ′ ( a ) x − a f ′ ( a ) + f ( a ) y-f(a)=f′(a)(x-a)=>y=f'(a)x-af'(a)+f(a) yf(a)=f(a)(xa)=>y=f(a)xaf(a)+f(a)
将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

2.2.2 法线

是与切线垂直的直线。切线的斜率为f’(a),则法线的斜率为
− 1 f ′ ( a ) -\dfrac{1}{f'(a)} f(a)1
法线方程的一般形式是:
y − f ( a ) = − 1 f ′ ( a ) ( x − a ) y−f(a)=−\dfrac{1}{f′(a)}(x−a) yf(a)=f(a)1(xa)

其中:

  • y 是法线上的点的纵坐标。
  • f(a是函数在点 x=a处的值。
  • f′(a)是函数在点 x=a处的导数,即切线的斜率。
  • x 是法线上的点的横坐标。
  • a 是法线点处的横坐标。

化简法线方程:
将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

3.可导与连续的关系

3.1 定义

连续性

一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:
lim ⁡ x → a f ( x ) = f ( a ) 或者 lim ⁡ h → 0 f ( a + h ) − f ( a ) = 0 \lim _{x\rightarrow a}f(x)=f(a)或者\lim _{h\rightarrow 0}f(a+h)-f(a)=0 xalimf(x)=f(a)或者h0limf(a+h)f(a)=0
这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。

可导性

一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:
f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h} f(a)=h0limhf(a+h)f(a)
这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。

所以从连续和可导定义看出,可导的条件比连续的条件更严格。

3.2 定理

1.可导性蕴含连续性

如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。

证明:如果函数 f(x) 在点 x=a处可导,则
f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h} f(a)=h0limhf(a+h)f(a)
我们要证f(x)在点 x=a 处连续,需要证明
lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)
变换上述等式:
lim ⁡ x → a ( f ( x ) − f ( a ) ) = lim ⁡ x → a ( f ( x ) − f ( a ) x − a ( x − a ) ) = lim ⁡ x → a f ( x ) − f ( a ) x − a . lim ⁡ x → a ( x − a ) = f ′ ( a ) . 0 = 0 \lim _{x\rightarrow a}(f(x)-f(a))=\lim _{x\rightarrow a}(\dfrac{f(x)-f(a)}{x-a}(x-a))=\lim _{x\rightarrow a}\dfrac{f(x)-f(a)}{x-a}.\lim _{x\rightarrow a}(x-a)=f'(a).0=0 xalim(f(x)f(a))=xalim(xaf(x)f(a)(xa))=xalimxaf(x)f(a).xalim(xa)=f(a).0=0
所以
lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)
2.连续性不一定蕴含可导性

反例:考虑函数 f(x)=∣x|在 x=0处是否可导。

证明:

连续性:
lim ⁡ x → 0 ∣ x ∣ = 0 = f ( 0 ) \lim _{x\rightarrow 0}|x|=0=f(0) x0limx=0=f(0)
函数是连续的

可导性:

左导数:
f − ′ ( 0 ) = lim ⁡ h → 0 − f ( h + 0 ) − f ( h ) h = lim ⁡ h → 0 − − h − 0 h = − 1 f_{-}'(0)=\lim _{h\rightarrow 0^{-}}\dfrac{f(h+0)-f(h)}{h}=\lim _{h\rightarrow 0^{-}}\dfrac{-h-0}{h}=-1 f(0)=h0limhf(h+0)f(h)=h0limhh0=1
右导数:
f + ′ ( 0 ) = lim ⁡ h → 0 + f ( 0 + h ) − f ( h ) h = lim ⁡ h → 0 + h − 0 h = 1 f_{+}'(0)=\lim _{h\rightarrow 0^{+}}\dfrac{f(0+h)-f(h)}{h}=\lim _{h\rightarrow 0^{+}}\dfrac{h-0}{h}=1 f+(0)=h0+limhf(0+h)f(h)=h0+limhh0=1
左右导数不相等,所以函数不是可导的。

4.求导公式

4.1 求导规则

  1. 常数规则
    d d x ( c ) = 0 \dfrac{d}{dx}(c)=0 dxd(c)=0

    其中 c 是常数。

  2. 幂函数规则
    d d x ( x n ) = n x n − 1 \dfrac{d}{dx}(x^{n})=nx^{n−1} dxd(xn)=nxn1

    其中 n 是任意实数。

  3. 常数倍规则
    d d x ( c ⋅ f ( x ) ) = c ⋅ f ′ ( x ) 或 ( c v ) ′ = c v ′ \dfrac{d}{dx}(c⋅f(x))=c⋅f′(x)或(cv)'=cv' dxd(cf(x))=cf(x)(cv)=cv

    其中 c 是常数。

  4. 和差规则
    d d x ( f ( x ) ± g ( x ) ) = f ′ ( x ) ± g ′ ( x ) 或 ( u ± v ) ′ = u ′ ± v ′ \dfrac{d}{dx}(f(x)±g(x))=f′(x)±g′(x)或(u±v)'=u'±v' dxd(f(x)±g(x))=f(x)±g(x)(u±v)=u±v

  5. 乘积规则
    d d x ( f ( x ) ⋅ g ( x ) ) = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) 或 ( u v ) ′ = u ′ v + u v ′ \dfrac{d}{dx}(f(x)⋅g(x))=f′(x)⋅g(x)+f(x)⋅g′(x)或(uv)'=u'v+uv' dxd(f(x)g(x))=f(x)g(x)+f(x)g(x)(uv)=uv+uv

  6. 商规则
    d d x ( f ( x ) g ( x ) ) = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) [ g ( x ) ] 2 或 ( u v ) ′ = u ′ v − u v ′ v 2 \dfrac{d}{dx}(\dfrac{f(x)}{g(x)})=\dfrac{f′(x)⋅g(x)−f(x)⋅g′(x)}{[g(x)]^{2}}或(\dfrac{u}{v})'=\dfrac{u'v-uv'}{v^{2}} dxd(g(x)f(x))=[g(x)]2f(x)g(x)f(x)g(x)(vu)=v2uvuv

    其中 g(x)≠0。

  7. 链式法则(复合函数求导):
    d d x ( f ( g ( x ) ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) 或 d y d x = d y d u . d u d x \dfrac{d}{dx}(f(g(x)))=f′(g(x))⋅g′(x)或\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx} dxd(f(g(x)))=f(g(x))g(x)dxdy=dudy.dxdu

4.2 常见函数的求导公式

  1. 指数函数
    d d x ( e x ) = e x \dfrac{d}{dx}(e^{x})=e^{x} dxd(ex)=ex

    d d x ( a x ) = a x l n ⁡ ( a ) \dfrac{d}{dx}(a^{x})=a^{x}ln⁡(a) dxd(ax)=axln(a)

    其中 a>0且 a≠1。

  2. 对数函数
    d d x ( l n ⁡ x ) = 1 x \dfrac{d}{dx}(ln⁡x)=\dfrac{1}{x} dxd(lnx)=x1

    d d x ( l o g ⁡ a ( x ) ) = 1 x l n ⁡ ( a ) \dfrac{d}{dx}(log⁡_{a}(x))=\dfrac{1}{xln⁡(a)} dxd(loga(x))=xln(a)1

    其中 a>0且 a≠1。

  3. 三角函数
    d d x ( s i n ⁡ ( x ) ) = c o s ⁡ ( x ) \dfrac{d}{dx}(sin⁡(x))=cos⁡(x) dxd(sin(x))=cos(x)

    d d x ( c o s ⁡ ( x ) ) = − s i n ⁡ ( x ) \dfrac{d}{dx}(cos⁡(x))=−sin⁡(x) dxd(cos(x))=sin(x)

    d d x ( t a n ⁡ ( x ) ) = s e c ⁡ 2 ( x ) = 1 c o s 2 ( x ) \dfrac{d}{dx}(tan⁡(x))=sec^{⁡2}(x)=\dfrac{1}{cos^{2}(x)} dxd(tan(x))=sec⁡2(x)=cos2(x)1

  4. 反三角函数
    d d x ( a r c s i n ⁡ ( x ) ) = 1 1 − x 2 \dfrac{d}{dx}(arcsin⁡(x))=\dfrac{1}{\sqrt{1-x^{2}}} dxd(arcsin(x))=1x2 1

    d d x ( a r c c o s ⁡ ( x ) ) = − 1 1 − x 2 \dfrac{d}{dx}(arccos⁡(x))=−\dfrac{1}{\sqrt{1-x^{2}}} dxd(arccos(x))=1x2 1

    d d x ( a r c t a n ⁡ ( x ) ) = 1 1 + x 2 \dfrac{d}{dx}(arctan⁡(x))=\dfrac{1}{1+x^{2}} dxd(arctan(x))=1+x21

5.高阶导数

高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作
f ′ ′ ( x ) 或 d 2 y d x 2 f''(x) 或 \dfrac{d^{2}y}{dx^{2}} f′′(x)dx2d2y
。类似地,三阶导数是对二阶导数再求导,记作
f ′ ′ ′ ( x ) 或 d 3 y d x 3 f'''(x)或 \dfrac{d^{3}y}{dx^{3}} f′′′(x)dx3d3y
,以此类推。

定义

对于一个函数 f(x),其 n 阶导数定义为:
f ( n ) ( x ) = d n y d x n f^{(n)}(x)=\dfrac{d^{n}y}{dx^{n}} f(n)(x)=dxndny
其中 n是正整数。

高阶导数的符号表示

  • 一阶导数:
    f ′ ( x ) 或 d y d x f′(x)或 \dfrac{dy}{dx} f(x)dxdy

  • 二阶导数:
    f ′ ′ ( x ) 或 d 2 y d x 2 f''(x) 或 \dfrac{d^{2}y}{dx^{2}} f′′(x)dx2d2y

  • 三阶导数:
    f ′ ′ ′ ( x ) 或 d 3 y d x 3 f'''(x) 或 \dfrac{d^{3}y}{dx^{3}} f′′′(x)dx3d3y

  • n 阶导数:
    f ( n ) ( x ) 或 d n y d x n f^{(n)}(x)或\dfrac{d^{n}y}{dx^{n}} f(n)(x)dxndny

6.隐函数求导

隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
d y d x \dfrac{dy}{dx} dxdy
隐函数求导的基本步骤

  1. 对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。
  2. 使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数
  3. 通过求导得到的方程,解出 dy/dx。

7.参数方程求导

参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:
{ x = f ( t ) y = g ( t ) \begin{cases}x=f(t)\\ y=g(t)\end{cases} {x=f(t)y=g(t)
其中 t 是参数。我们希望求出曲线的导数 dy/dx。

参数方程求导的基本步骤

  1. 求 x 对 t 的导数:
    d x d t = f ′ ( t ) \dfrac{dx}{dt}=f′(t) dtdx=f(t)

  2. 求 y对 t 的导数:
    d y d t = g ′ ( t ) \dfrac{dy}{dt}=g′(t) dtdy=g(t)

  3. 求 dy/dx:
    d y d x = d y d t d x d t = g ′ ( t ) f ′ ( t ) \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g′(t)}{f′(t)} dxdy=dtdxdtdy=f(t)g(t)

3.微分

3.1.定义

微分是函数在某个变化过程中的改变量的线性主要部分。

若函数y=f(x)在点x处有导数f’(x)存在,则y因x的变化量△x所引起的改变量
△ y = f ( x + △ x ) − f ( x ) △y=f(x+△x)-f(x) y=f(x+x)f(x)
可以表示为
△ y = f ′ ( x ) ⋅ △ x + o ( △ x ) △y=f'(x)·△x+o(△x) y=f(x)x+o(x)
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,

微分dy可以近似地表示为
d y = f ′ ( x ) △ x dy=f'(x)△x dy=f(x)x
,它描述了函数值y随自变量x变化而变化的线性部分。‌

3.2.可微的充要条件

函数 f(x) 在点 x=a 处可微的充要条件是:

  1. 函数在点 x=a处连续:
    lim ⁡ ⁡ x → a f ( x ) = f ( a ) \lim _{⁡x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)

  2. 函数在点 x=a 处左右导数存在且相等:
    f − ′ ( a ) = f + ′ ( a ) f'_{-}(a)=f'_{+}(a) f(a)=f+(a)

简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。

3.3.微分公式与法则

根据微分定义
d y = f ′ ( x ) d x dy=f'(x)dx dy=f(x)dx
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。

3.4.微分的几何意义

假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
△ y = f ( x 0 + △ x ) − f ( x 0 ) △y=f(x_{0}+△x)-f(x_{0}) y=f(x0+x)f(x0)
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
d y = f ′ ( x 0 ) △ x dy=f'(x_{0})△x dy=f(x0)x
f’(x)是切线的斜率,dy是△y的近似值,如上图所示,所以

△ y ≈ f ′ ( x 0 ) △ x f ( x 0 + △ x ) = △ y + f ( x 0 ) ≈ f ′ ( x 0 ) △ x + f ( x 0 ) △y\approx f'(x_{0})△x\\ f(x_{0}+△x)=△y+f(x_{0})\approx f'(x_{0})△x+f(x_{0}) yf(x0)xf(x0+x)=y+f(x0)f(x0)x+f(x0)
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。

3.5.微分中值定理

3.5.1 罗尔定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b]上连续。
  2. 在开区间 (a,b)上可导。
  3. 在区间端点的函数值相等,即 f(a)=f(b)。

那么,在开区间 (a,b)内至少存在一点 c,使得:f′©=0

罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。

3.5.2 拉格朗日中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b] 上连续。
  2. 在开区间 (a,b)上可导。

那么,在开区间 (a,b) 内至少存在一点 c,使得:
f ′ ( c ) = f ( b ) − f ( a ) b − a f′(c)=\dfrac{f(b)−f(a)}{b−a} f(c)=baf(b)f(a)
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。

3.5.3 柯西中值定理

如果函数 f(x) 和 g(x) 满足以下条件:

  1. 在闭区间 [a,b]上连续。
  2. 在开区间 (a,b)上可导。
  3. 在开区间 (a,b) 内,g′(x)≠0。

那么,在开区间 (a,b) 内至少存在一点 c,使得:
f ′ ( c ) g ′ ( c ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \dfrac{f′(c)}{g′(c)}=\dfrac{f(b)−f(a)}{g(b)−g(a)} g(c)f(c)=g(b)g(a)f(b)f(a)
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。

怎么理解柯西中值定理?

将f(x)和g(x)看作是参数方程:
{ x = f ( t ) y = g ( t ) \begin{cases}x=f(t)\\ y=g(t)\end{cases} {x=f(t)y=g(t)

d y d x = d y d t d x d t = g ′ ( t ) f ′ ( t ) \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g'(t)}{f'(t)} dxdy=dtdxdtdy=f(t)g(t)

a、b端点连线的斜率为:
g ( b ) − g ( a ) f ( b ) − f ( a ) \dfrac{g(b)-g(a)}{f(b)-f(a)} f(b)f(a)g(b)g(a)
根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:
g ′ ( t ) f ′ ( t ) = g ( b ) − g ( a ) f ( b ) − f ( a ) \dfrac{g'(t)}{f'(t)}=\dfrac{g(b)-g(a)}{f(b)-f(a)} f(t)g(t)=f(b)f(a)g(b)g(a)

3.5.4 洛必达法则

洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。

设函数 f(x)和 g(x 满足以下条件:

  1. 在点 a 的某个去心邻域内可导,且 g′(x)≠0。

  2. lim ⁡ x → a f ( x ) = 0 且 lim ⁡ ⁡ x → a g ( x ) = 0 ,或者 lim ⁡ x → a f ( x ) = ± ∞ 且 lim ⁡ x → a g ( x ) = ± ∞ 。 \lim _{x\rightarrow a}f(x)=0 且 \lim _{⁡x\rightarrow a}g(x)=0,或者 \lim _{x\rightarrow a}f(x)=±∞ 且 \lim _{x\rightarrow a}g(x)=±∞。 xalimf(x)=0xalimg(x)=0,或者xalimf(x)=±xalimg(x)=±

如果
lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)} xalimg(x)f(x)
存在(或为无穷大),那么:
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim _{x\rightarrow a}\dfrac{f(x)}{g(x)}=\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)} xalimg(x)f(x)=xalimg(x)f(x)

4.不定积分

4.1.定义

如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
∫ f ( x )   d x \int f(x) dx f(x)dx
表示 f(x) 的所有原函数,通常写成:

∫ f ( x )   d x = F ( x ) + C \int f(x) dx=F(x)+C f(x)dx=F(x)+C
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

4.2.基本积分公式

  1. 常数积分
    ∫ k   d x = k x + C ( 其中 k 是常数 ) ∫k dx=kx+C(其中 k 是常数) kdx=kx+C(其中k是常数)

  2. 幂函数积分
    ∫ x n   d x = x n + 1 n + 1 + C ( 其中 n ≠ − 1 ) ∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1) xndx=n+1xn+1+C(其中n=1)

  3. 指数函数积分
    ∫ e x   d x = e x + C ∫e^{x} dx=e^{x}+C exdx=ex+C

    ∫ a x   d x = a x l n ⁡ a + C ( 其中 a > 0 且 a ≠ 1 ) ∫a^{x} dx=\dfrac{a^{x}}{ln⁡a}+C(其中 a>0 且 a≠1) axdx=lnaax+C(其中a>0a=1)

  4. 对数函数积分
    ∫ 1 x   d x = l n ⁡ ∣ x ∣ + C ∫\dfrac{1}{x} dx=ln⁡∣x∣+C x1dx=lnx+C

  5. 三角函数积分
    ∫ s i n ⁡ x   d x = − c o s ⁡ x + C ∫sin⁡x dx=−cos⁡x+C sinxdx=cosx+C

    ∫ c o s ⁡ x   d x = s i n ⁡ x + C ∫cos⁡x dx=sin⁡x+C cosxdx=sinx+C

  6. 反三角函数积分
    ∫ 1 1 − x 2   d x = a r c s i n ⁡ x + C ∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsin⁡x+C 1x2 1dx=arcsinx+C

    ∫ 1 1 + x 2   d x = a r c t a n ⁡ x + C ∫\dfrac{1}{1+x^{2}} dx=arctan⁡x+C 1+x21dx=arctanx+C

4.3.换元积分法

4.3.1 第一类换元积分法

  1. 选择合适的变量替换:
    选择一个合适的变量替换 u=g(x),使得积分变得更简单。

  2. 求导数:
    求 u 对 x 的导数
    d u d x = g ′ ( x ) \dfrac{du}{dx}=g′(x) dxdu=g(x)
    ,并将其改写为
    d u = g ′ ( x )   d x du=g′(x) dx du=g(x)dx

  3. 替换积分变量:
    将原积分中的 x 替换为 u,并将 dx 替换为
    d u g ′ ( x ) \dfrac{du}{g′(x)} g(x)du

  4. 求解新积分:
    求解新的积分
    ∫ f ( u )   d u ∫f(u) du f(u)du

  5. 回代变量:
    将 u 回代为 g(x),得到最终的不定积分结果。

简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。

4.3.2 第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

  1. 选择合适的变量替换:
    选择一个合适的变量替换 x=g(t),使得积分变得更简单。

  2. 求导数:
    求 x 对 t 的导数
    d x d t = g ′ ( t ) \dfrac{dx}{dt}=g′(t) dtdx=g(t)
    ,并将其改写为
    d x = g ′ ( t )   d t dx=g′(t) dt dx=g(t)dt

  3. 替换积分变量:
    将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。

  4. 求解新积分:
    求解新的积分
    ∫ f ( g ( t ) ) g ′ ( t )   d t ∫f(g(t))g′(t) dt f(g(t))g(t)dt

  5. 回代变量:
    将 t 回代为
    g − 1 ( x ) g^{−1}(x) g1(x)
    ,得到最终的不定积分结果。

简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。

5.定积分

定积分是微积分中的一个重要概念,用于求解函数在某个区间上的累积效应或面积。

5.1.定义

定积分
∫ a b f ( x )   d x ∫_{a}^{b}f(x) dx abf(x)dx
表示函数 f(x)在区间 [a,b]上的累积效应或面积。定积分的定义可以通过以下步骤来理解:

  1. 分割区间
    将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中
    Δ x i = x i − x i − 1 Δx_{i}=x_{i}−x_{i−1} Δxi=xixi1
    ,且 x0=a,xn=b。

  2. 取样本点
    在每个小区间
    [ x i − 1 , x i ] [x_{i−1},x_{i}] [xi1,xi]
    内取一个样本点 ξi。

  3. 构造黎曼和
    构造黎曼和
    ∑ i = 1 n f ( ξ i ) Δ x i \sum _{i=1}^{n}f(ξ_{i})Δx_i i=1nf(ξi)Δxi
    ,表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。

  4. 取极限
    当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:
    ∫ a b f ( x )   d x = lim ⁡ n → ∞ ∑ i = 1 n f ( ξ i ) Δ x i ∫_{a}^{b}f(x) dx=\lim _{n\rightarrow \infty}\sum _{i=1}^{n}f(ξ_{i})Δx_{i} abf(x)dx=nlimi=1nf(ξi)Δxi

说明:

黎曼和是通过将区间 [a,b]分成 n 个等宽的子区间,每个子区间的宽度为
Δ x = b − a n Δx=\dfrac{b−a}{n} Δx=nba
,然后选择每个子区间内的一点 xi,计算矩形的面积之和来近似积分的。

黎曼和可以表示为:
S n = ∑ i = 1 n f ( x i ) Δ x S_n=∑_{i=1}^nf(x_i)Δx Sn=i=1nf(xi)Δx
其中:

  • Sn是黎曼和的值。
  • n是子区间的数量。
  • xi是第 i个子区间 [xi−1,xi]内的一点。
  • Δx是每个子区间的宽度。

以上定义的几何图形:

5.2.几何意义

定积分
∫ a b f ( x )   d x ∫_{a}^{b}f(x) dx abf(x)dx
的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:

  • 如果 f(x)≥0,则定积分表示曲线下方的面积。
  • 如果 f(x)≤0,则定积分表示曲线上方的面积的负值。

5.3.性质

定积分具有以下重要性质:

  1. 线性性质:
    ∫ a b [ c f ( x ) + d g ( x ) ]   d x = c ∫ a b f ( x )   d x + d ∫ a b g ( x )   d x ∫_{a}^{b}[cf(x)+dg(x)] dx=c∫_{a}^{b}f(x) dx+d∫_{a}^{b}g(x) dx ab[cf(x)+dg(x)]dx=cabf(x)dx+dabg(x)dx
    其中 c 和 d 是常数。

  2. 区间可加性:
    ∫ a b f ( x )   d x = ∫ a c f ( x )   d x + ∫ c b f ( x )   d x ∫_{a}^{b}f(x) dx=∫_{a}^{c}f(x) dx+∫_{c}^{b}f(x) dx abf(x)dx=acf(x)dx+cbf(x)dx
    其中 a≤c≤b。

  3. 积分上下限交换:
    ∫ a b f ( x )   d x = − ∫ b a f ( x )   d x ∫_{a}^{b}f(x) dx=−∫_{b}^{a}f(x) dx abf(x)dx=baf(x)dx

  4. 定积分中值定理

    如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:

∫ a b f ( x )   d x = f ( c ) ( b − a ) ∫_{a}^{b}f(x) dx=f(c)(b−a) abf(x)dx=f(c)(ba)

证明:

设f(x)在[a,b]上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为M,最小值为m,最大值和最小值可相等。

m ≤ f ( x ) ≤ M m\leq f(x)\leq M mf(x)M
两边同时积分可得:
m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq \int _{a}^{b}f(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)
同除以b-a从而得到:
m ≤ 1 ( b − a ) ∫ a b f ( x ) d x ≤ M m\leq \dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx\leq M m(ba)1abf(x)dxM
由连续函数的介值定理可知,必定
∃ c ∈ [ a , b ] \exists c\in [a,b] c[a,b]
,使得
f ( c ) = 1 ( b − a ) ∫ a b f ( x ) d x f(c)=\dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx f(c)=(ba)1abf(x)dx
,即:
∫ a b f ( x ) d x = f ( c ) ( b − a ) , ∃ c ∈ [ a , b ] \int _{a}^{b}f(x)dx=f(c)(b-a),\exists c\in [a,b] abf(x)dx=f(c)(ba),c[a,b]

5.4.微积分基本公式

牛顿-莱布尼茨公式
∫ a b f ( x ) d x = F ( b ) − F ( a ) ∫_{a}^{b}f(x)dx=F(b)−F(a) abf(x)dx=F(b)F(a)

其中, F ( x ) 是 f ( x ) 的一个原函数,即 F ′ ( x ) = f ( x ) 。 其中,F(x)是 f(x)的一个原函数,即 F′(x)=f(x)。 其中,F(x)f(x)的一个原函数,即F(x)=f(x)

微积分基本定理

微积分基本定理分为两部分,分别描述了积分上限函数的性质和定积分的基本公式。

第一部分(Part 1)

如果 f(t) 在区间 [a,b]上连续,则积分上限函数
F ( x ) = ∫ a x f ( t )   d t F(x)=∫_{a}^{x}f(t) dt F(x)=axf(t)dt
在区间 [a,b] 上可导,并且其导数为:

F ′ ( x ) = f ( x ) F′(x)=f(x) F(x)=f(x)
第一基本定理表明不定积分是微分的逆运算,保证了某连续函数的原函数的存在性。

第二部分(Part 2)

如果 F(x)是 f(x)的一个原函数,即 F′(x)=f(x),则:
∫ a b f ( x )   d x = F ( b ) − F ( a ) ∫_{a}^{b}f(x) dx=F(b)−F(a) abf(x)dx=F(b)F(a)
第二基本定理则提供了定积分和不定积分之间的联系,使得定积分的计算变得简便。

5.5.定积分换元法

步骤

  1. 选择合适的变量替换:
    选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:

x = g − 1 ( t ) = h ( t ) x=g^{-1}(t)=h(t) x=g1(t)=h(t)

  1. 求导数:
    对 x 的导数

d x = h ′ ( t ) d t dx=h'(t)dt dx=h(t)dt

  1. 替换积分变量:
    将原积分中的 x 替换为 t,并将 dx 替换为

h ′ ( t ) d t h'(t)dt h(t)dt

  1. 确定新的积分上下限:
    将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。

  2. 求解新积分:
    求解新的定积分

∫ t 1 t 2 f ( h ( t ) )   h ′ ( t ) d t ∫_{t_{1}}^{t_{2}}f(h(t)) h'(t)dt t1t2f(h(t))h(t)dt

6.多元函数

6.1.二元极限

定义

设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当
0 < ( x − a ) 2 + ( y − b ) 2 < δ 0<\sqrt{(x−a)^2+(y−b)^2}<δ 0<(xa)2+(yb)2 <δ
时,总有:

∣f(x,y)−L∣<ϵ

则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:
lim ⁡ ⁡ ( x , y ) → ( a , b ) f ( x , y ) = L \lim⁡ _{(x,y)\rightarrow (a,b)}f(x,y)=L lim(x,y)(a,b)f(x,y)=L
几何意义

当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。

如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。

6.2.偏导数

‌偏导数是‌多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。

这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。‌

定义

设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:
lim ⁡ ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{⁡Δx→0}\dfrac{f(x_0+Δx,y_0)−f(x_0,y_0)}{Δx} ⁡Δx0limΔxf(x0+Δx,y0)f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:
∂ f ∂ x ∣ ( x 0 , y 0 ) 或 f x ′ ( x 0 , y 0 ) \dfrac{∂f}{∂x}∣(x_0,y_0)或f'_x(x_0,y_0) xf(x0,y0)fx(x0,y0)
类似地,如果极限:
lim ⁡ ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim⁡ _{Δy→0}\dfrac{f(x_0,y_0+Δy)−f(x_0,y_0)}{Δy} limΔy0Δyf(x0,y0+Δy)f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:
∂ f ∂ y ∣ ( x 0 , y 0 ) 或 f y ′ ( x 0 , y 0 ) \dfrac{∂f}{∂y}∣(x_0,y_0)或f'_y(x_0,y_0) yf(x0,y0)fy(x0,y0)
偏导数的计算方法‌

对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。

6.3.全微分

定义

如果函数z=f(x, y)在点(x, y)处的全增量
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) Δz=f(x+Δx,y+Δy)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)
可以表示为
Δ z = A Δ x + B Δ y + o ( ρ ) Δz=AΔx+BΔy+o(ρ) Δz=AΔx+BΔy+o(ρ)
,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。

可微的必要条件条件

若z=f(x,y)在(x,y)点处可微,则偏导数
f x ′ ( x , y ) 和 f y ′ ( x , y ) f_{x}'(x,y)和f_{y}'(x,y) fx(x,y)fy(x,y)
存在,并且
d z = f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y 或 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) ⁡ d x dz=f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)⁡dx dz=fx(x,y)⁡Δx+fy(x,y)⁡Δydz=fx(x,y)dx+fy(x,y)dx
可微的充分条件

z=f(x,y)在(x,y)的某个邻域内有连续的偏导数
f x ′ ( x , y ) 和 f y ′ ( x , y ) f_{x}'(x,y)和f_{y}'(x,y) fx(x,y)fy(x,y)
则在(x,y)处可微,
d z = f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y 或 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) ⁡ d x dz=f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)⁡dx dz=fx(x,y)⁡Δx+fy(x,y)⁡Δydz=fx(x,y)dx+fy(x,y)dx

6.4.梯度

梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。

定义

设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:
∇ f ( a ) = ( ∂ f ∂ x 1 ( a ) , ∂ f ∂ x 2 ( a ) , … , ∂ f ∂ x n ( a ) ) ∇f(a)=(\dfrac{∂f}{∂x_1}(a),\dfrac{∂f}{∂x_2}(a),…,\dfrac{∂f}{∂x_n}(a)) f(a)=(x1f(a),x2f(a),,xnf(a))
其中,
∂ f ∂ x i ( a ) \dfrac{∂f}{∂x_i}(a) xif(a)
是函数 f 在点 a 处对第 i 个自变量的偏导数。

性质

  1. 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。
  2. 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。

沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。

梯度下降

梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。

算法步骤

  1. 初始化:选择一个初始点 x0。

  2. 迭代更新:对于每次迭代 k,计算当前点的梯度
    ∇ f ( x k ) ∇f(x_k) f(xk)
    ,并更新参数:
    x k + 1 = x k − η ∇ f ( x k ) x_{k+1}=x_k−η∇f(x_k) xk+1=xkηf(xk)
    其中,η 是学习率(步长),控制每次更新的步幅。

  3. 终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:

    1. 梯度的模足够小:当梯度的模(或范数)
      ∥ ∇ f ( x k ) ∥ ∥∇f(xk)∥ ∥∇f(xk)
      小于某个阈值时,停止迭代。

      说明:

      梯度的范数表示梯度向量的大小,即梯度向量的长度。

      梯度的范数(模) ∥∇f(xk)∥是这个向量的欧几里得长度,定义为:
      ∣ ∣ ∇ f ( x k ) ∣ ∣ = ( ∂ f ∂ x 1 ) 2 + ( ∂ f ∂ x 2 ) 2 + ⋯ + ( ∂ f ∂ x n ) 2 ||∇f(x_k)||=\sqrt{(\dfrac{∂f}{∂x_1})^2+(\dfrac{∂f}{∂x_2})^2+⋯+(\dfrac{∂f}{∂x_n})^2} ∣∣∇f(xk)∣∣=(x1f)2+(x2f)2++(xnf)2

    2. 达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。

    3. 函数值变化足够小:当函数值的变化
      ∣ f ( x k + 1 ) − f ( x k ) ∣ ∣f(x_{k+1})−f(x_k)∣ f(xk+1)f(xk)
      小于某个阈值时,停止迭代。

学习率

学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:

  • 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。
  • 学习率过小:可能导致算法收敛速度过慢。

6.5.二重积分

二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二

重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。

定义

设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:
∬ D f ( x , y )   d A ∬_Df(x,y) dA Df(x,y)dA

其中 dA表示面积元素。

几何意义

如果 f(x,y)是非负函数,二重积分
∬ D f ( x , y )   d A ∬_Df(x,y) dA Df(x,y)dA
表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。

二重积分的计算步骤-直角坐标系

在直角坐标系下,二重积分可以表示为两个定积分的乘积:
∬ D f ( x , y )   d A = ∫ a b ∫ g ( x ) h ( x ) f ( x , y )   d y   d x ∬_Df(x,y) dA=∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx Df(x,y)dA=abg(x)h(x)f(x,y)dydx

其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。

  1. 确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。

  2. 设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是 a≤x≤b 和 c≤y≤d。

  3. 写出积分表达式:根据积分限写出二重积分的表达式:
    ∫ a b ∫ g ( x ) h ( x ) f ( x , y )   d y   d x = ∫ a b d x ∫ g ( x ) h ( x ) f ( x , y )   d y   ∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx=∫_a^bdx∫_{g(x)}^{h(x)}f(x,y) dy  abg(x)h(x)f(x,y)dydx=abdxg(x)h(x)f(x,y)dy

  4. 计算内层积分:先对 y 进行积分,得到关于 x 的表达式。

  5. 计算外层积分:再对 x 进行积分,得到最终的积分值。

二重积分的计算步骤-极坐标系

极坐标系的二重积分计算步骤同直角坐标系,不同的是需要将直角坐标系的坐标转换为极坐标。

极坐标系的基本概念

  • 原点:极坐标系的原点称为极点(通常记作 O)。
  • 极径:从极点到某一点的距离称为径向距离(通常记作 r)。
  • 极角:从极点到某一点的射线与极轴(通常是正 xx 轴)之间的角度称为极角(通常记作 θ)。

给定点的极坐标 (r,θ),可以转换为直角坐标 (x,y):
x = r c o s ⁡ θ y = r s i n ⁡ θ x=rcos⁡θ\\ y=rsin⁡θ x=rcosθy=rsinθ
在极坐标下,二重积分的表达式为:
∬ D f ( x , y )   d A = ∬ D f ( r , θ )   r   d r   d θ ∬_Df(x,y) dA=∬_Df(r,θ) r dr dθ Df(x,y)dA=Df(r,θ)rdrdθ
其中 r 和 θ 分别是极径和极角。

注意:转换为极坐标系的二重积分中需要多加一个r ,这个最容易忘记。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值