1.函数
1.1 定义
函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作
y = f ( x ) , x ∈ X y=f\left( x\right) ,x\in X y=f(x),x∈X
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。
函数的两要素是指函数的定义域和值域。
定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。
值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。
常见函数类型
-
线性函数:
f ( x ) = a x + b f(x)=ax+b f(x)=ax+b
,其中 a 和 b 是常数。
-
多项式函数:
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_{n}x^{n}+a_{n−1}x^{n−1}+⋯+a_{1}x+a_{0} f(x)=anxn+an−1xn−1+⋯+a1x+a0
,其中 ai是常数。
-
指数函数:
f ( x ) = a x f(x)=a^{x} f(x)=ax
,其中 a>0 且 a≠1。
-
对数函数:
f ( x ) = l o g a ( x ) f(x)=log_{a}(x) f(x)=loga(x)
,其中 a>0 且 a≠1。
-
三角函数
-
正弦函数(sin):
s i n ( θ ) = 对边 斜边 sin(θ)=\dfrac{对边}{斜边} sin(θ)=斜边对边 -
余弦函数(cos):
c o s ( θ ) = 邻边 斜边 cos(θ)=\dfrac{邻边}{斜边} cos(θ)=斜边邻边 -
正切函数(tan):
t a n ( θ ) = 对边 邻边 = s i n ( θ ) c o s ( θ ) tan(θ)=\dfrac{对边}{邻边}=\dfrac{sin(θ)}{cos(θ)} tan(θ)=邻边对边=cos(θ)sin(θ)
- 基本关系
1.2.1 毕达哥拉斯恒等式
s
i
n
2
(
θ
)
+
c
o
s
2
(
θ
)
=
1
sin^2(θ)+cos^2(θ)=1
sin2(θ)+cos2(θ)=1
这个恒等式可以从直角三角形的勾股定理推导出来。
1.2.2 商数关系
t
a
n
(
θ
)
=
s
i
n
(
θ
)
c
o
s
(
θ
)
c
o
t
(
θ
)
=
c
o
s
(
θ
)
s
i
n
(
θ
)
=
1
t
a
n
(
θ
)
tan(θ)=\dfrac{sin(θ)}{cos(θ)}\\ cot(θ)=\dfrac{cos(θ)}{sin(θ)}=\dfrac{1}{tan(θ)}
tan(θ)=cos(θ)sin(θ)cot(θ)=sin(θ)cos(θ)=tan(θ)1
1.2.3 倒数关系
s
e
c
(
θ
)
=
1
c
o
s
(
θ
)
c
s
c
(
θ
)
=
1
s
i
n
(
θ
)
sec(θ)=\dfrac{1}{cos(θ)}\\ csc(θ)=\dfrac{1}{sin(θ)}
sec(θ)=cos(θ)1csc(θ)=sin(θ)1
1.3. 三角函数的周期性
-
正弦函数和余弦函数:
s i n ( θ + 2 k π ) = s i n ( θ ) sin(θ+2kπ)=sin(θ) sin(θ+2kπ)=sin(θ)c o s ( θ + 2 k π ) = c o s ( θ ) cos(θ+2kπ)=cos(θ) cos(θ+2kπ)=cos(θ)
其中,k 是任意整数。
-
正切函数:
t a n ( θ + k π ) = t a n ( θ ) tan(θ+kπ)=tan(θ) tan(θ+kπ)=tan(θ)
其中,k 是任意整数。
1.4. 三角函数的对称性
-
正弦函数:
s i n ( − θ ) = − s i n ( θ ) sin(−θ)=−sin(θ) sin(−θ)=−sin(θ) -
余弦函数:
c o s ( − θ ) = c o s ( θ ) cos(−θ)=cos(θ) cos(−θ)=cos(θ) -
正切函数:
t a n ( − θ ) = − t a n ( θ ) tan(−θ)=−tan(θ) tan(−θ)=−tan(θ)
1.5. 三角函数的和差公式
-
正弦函数的和差公式:
s i n ( A ± B ) = s i n ( A ) c o s ( B ) ± c o s ( A ) s i n ( B ) sin(A±B)=sin(A)cos(B)±cos(A)sin(B) sin(A±B)=sin(A)cos(B)±cos(A)sin(B) -
余弦函数的和差公式:
c o s ( A ± B ) = c o s ( A ) c o s ( B ) ∓ s i n ( A ) s i n ( B ) cos(A±B)=cos(A)cos(B)∓sin(A)sin(B) cos(A±B)=cos(A)cos(B)∓sin(A)sin(B) -
正切函数的和差公式:
t a n ( A ± B ) = t a n ( A ) ± t a n ( B ) 1 ∓ t a n ( A ) t a n ( B ) tan(A±B)=\dfrac{tan(A)±tan(B)}{1∓tan(A)tan(B)} tan(A±B)=1∓tan(A)tan(B)tan(A)±tan(B)
1.6. 三角函数的倍角公式
-
正弦函数的倍角公式:
s i n ( 2 θ ) = 2 s i n ( θ ) c o s ( θ ) sin(2θ)=2sin(θ)cos(θ) sin(2θ)=2sin(θ)cos(θ) -
余弦函数的倍角公式:
c o s ( 2 θ ) = c o s 2 ( θ ) − s i n 2 ( θ ) = 2 c o s 2 ( θ ) − 1 = 1 − 2 s i n 2 ( θ ) cos(2θ)=cos^2(θ)−sin^2(θ)=2cos^2(θ)−1=1−2sin^2(θ) cos(2θ)=cos2(θ)−sin2(θ)=2cos2(θ)−1=1−2sin2(θ) -
正切函数的倍角公式:
t a n ( 2 θ ) = 2 t a n ( θ ) 1 − t a n 2 ( θ ) tan(2θ)=\dfrac{2tan(θ)}{1−tan^2(θ)} tan(2θ)=1−tan2(θ)2tan(θ)
1.7. 三角函数的半角公式
-
正弦函数的半角公式:
s i n ( θ 2 ) = ± 1 − c o s ( θ ) 2 sin(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos(θ)}{2}} sin(2θ)=±21−cos(θ) -
余弦函数的半角公式:
c o s ( θ 2 ) = ± 1 + c o s ( θ ) 2 cos(\dfrac{θ}{2})=±\sqrt{\dfrac{1+cos(θ)}{2}} cos(2θ)=±21+cos(θ) -
正切函数的半角公式:
t a n ( θ 2 ) = ± 1 − c o s ( θ ) 1 + c o s ( θ ) tan(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos(θ)}{1+cos(θ)}} tan(2θ)=±1+cos(θ)1−cos(θ)
1.2函数的特性
1.2.1 有界性
上界:存在一个实数k1,使得
∃
k
1
,
f
(
x
)
≤
k
\exists k_{1},f(x) \leq k
∃k1,f(x)≤k
下界:存在一个实数k2,使得
∃
k
2
,
f
(
x
)
≥
k
\exists k_{2},f(x) \geq k
∃k2,f(x)≥k
注:特殊符号说明:
∀
:任给一个数,
∃
:存在一个数
\forall :任给一个数,\exists:存在一个数
∀:任给一个数,∃:存在一个数
有界:
一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
m
≤
f
(
x
)
≤
M
m≤f(x)≤M
m≤f(x)≤M
其中:
- M 称为函数的上界。
- m 称为函数的下界。
一个函数有界的充要条件:既有上界,又有下界。
分类
根据函数的有界性,可以分为以下几种情况:
- 有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
- 无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.2.2 单调性
定义
一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:
- 单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
- 严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
- 单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
- 严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
1.2.3 奇偶性
定义
一个函数 f(x) 在其定义域 D 上称为:
- 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
- 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性
定义
一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
f
(
x
+
T
)
=
f
(
x
)
f(x+T)=f(x)
f(x+T)=f(x)
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。
1.2.极限
1.2.1 数列极限
定义
一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:
∣
a
n
−
L
∣
<
ϵ
∣a_n−L∣<ϵ
∣an−L∣<ϵ
换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:
lim
n
→
∞
a
n
=
L
\lim _{n\rightarrow \infty }a_{n}=L
n→∞liman=L
如果数列不收敛于任何有限值,则称该数列为发散的。
理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质
-
唯一性:如果数列 {an}收敛,则其极限是唯一的。
-
有界性:如果数列 {an}收敛,则它是有界的。
-
保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
lim n → ∞ a n ≤ lim n → ∞ b n \lim _{n\rightarrow \infty }a_{n}\leq \lim _{n\rightarrow \infty }b_{n} n→∞liman≤n→∞limbn -
四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
极限的判定 -
直接法:
-
通过分析数列的通项公式,直接计算其极限。
-
例如,数列
{ a n } = ( n 2 + 1 2 n 2 + 3 ) \{a_{n}\}=(\dfrac{n^{2}+1}{2n^{2}+3}) {an}=(2n2+3n2+1)
,计算其极限:
lim n → ∞ n 2 + 1 2 n 2 + 3 = lim n → ∞ 1 + 1 n 2 2 + 3 n 2 = 1 2 \lim _{n\rightarrow \infty }\dfrac{n^{2}+1}{2n^{2}+3}=\lim _{n\rightarrow \infty }\dfrac{1+\dfrac{1}{n^{2}}}{2+\dfrac{3}{n^2}}=\dfrac{1}{2} n→∞lim2n2+3n2+1=n→∞lim2+n231+n21=21
-
-
夹逼定理:
- 如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
lim n → ∞ a n = lim n → ∞ c n = L \lim _{n\rightarrow \infty }a_{n}= \lim _{n\rightarrow \infty }c_{n}=L n→∞liman=n→∞limcn=L
,则
lim n → ∞ b n = L \lim _{n\rightarrow \infty }b_{n}=L n→∞limbn=L
- 如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
1.2.3 无穷大与无穷小
-
无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
lim x → a f ( x ) = ∞ \lim _{x\rightarrow a }f(x)=\infty x→alimf(x)=∞
无穷大分为正无穷大和负无穷大。无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;
无穷大乘无穷大肯定为无穷大。
-
无穷小:如果
lim x → a f ( x ) = 0 或 lim x → ∞ f ( x ) = 0 \lim _{x\rightarrow a }f(x)=0或\lim _{x\rightarrow \infty }f(x)=0 x→alimf(x)=0或x→∞limf(x)=0
,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。运算法则:
1.无穷小加、减、乘无穷小都是无穷小
2.有界函数与无穷小的乘积也为无穷小
3.常数与无穷小的乘积也为无穷小
4.无穷小除以无穷小不确定。
注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别。
负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。
如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。
-
高阶无穷小
设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。
如果
lim x → a α β = 0 \lim _{x\rightarrow a }\dfrac{α}{β}=0 x→alimβα=0
,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。如:
lim x → 0 x 2 3 x = 0 \lim _{x\rightarrow 0 }\dfrac{x^{2}}{3x}=0 x→0lim3xx2=0
x2比3x收敛速度快,则x2是3x的高阶无穷小,记作
x 2 = o ( 3 x ) x^{2}=o(3x) x2=o(3x) -
低阶无穷小
设 α 和 β 是两个无穷小量。
如果
lim
x
→
a
α
β
=
∞
\lim _{x\rightarrow a }\dfrac{α}{β}=\infty
x→alimβα=∞
,则称 α 是 β 的低阶无穷小。
-
同阶无穷小
设 α 和 β 是两个无穷小量。
如果
lim x → a α β = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β}=c(其中 c 是一个非零常数) x→alimβα=c(其中c是一个非零常数)
,则称 α 和 β 是同阶无穷小。 -
等价无穷小
-
设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。
-
如果
lim x → a α β = 1 \lim _{x\rightarrow a }\dfrac{α}{β}=1 x→alimβα=1
,则称 α 和 β 是等价无穷小,记作 α∼β。
-
-
k阶无穷小
-
设 α和 β 是两个无穷小量,且
β = o ( x k ) 当 x → 0 β=o(x^{k}) 当 x→0 β=o(xk)当x→0 -
如果
lim x → a α β k = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β^{k}}=c(其中 c 是一个非零常数) x→alimβkα=c(其中c是一个非零常数)
,则称 α 是 β 的 k 阶无穷小。
-
1.2.4 无穷大极限
函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。
具体分类:
-
当 x→+∞ 时的极限:
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
lim x → + ∞ f ( x ) = A \lim _{x\rightarrow +\infty }f(x)=A x→+∞limf(x)=A
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
-
当 x→−∞时的极限:
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
lim x → − ∞ f ( x ) = A \lim _{x\rightarrow -\infty }f(x)=A x→−∞limf(x)=A
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
2.导数
1.2.1 导数定义
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
f
’
(
x
0
)
或
d
y
d
x
∣
x
=
x
0
f’(x_{0})或\dfrac{dy}{dx}|_{x=x_{0}}
f’(x0)或dxdy∣x=x0
即:
f
′
(
x
0
)
=
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
f′(x_{0})=\lim _{Δx\rightarrow 0}\dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx}
f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)
其中:
-
Δx 是一个很小的增量,表示 x 的变化量。
-
f ( x 0 + Δ x ) f(x_{0} + Δx) f(x0+Δx)
是 x 在 x0 点增加 Δx 后的函数值。
-
f(x0) 是 x 在 x0 点的函数值。
-
f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)−f(x0)
是函数在 x=x0 处的平均变化率。
-
lim Δ x → 0 \lim _{Δx\rightarrow 0} Δx→0lim
表示当 Δx 趋近于 0 时的极限。
-
平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是
f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)−f(x0)
。这个比值表示函数在这段区间内的平均变化速度。 -
瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。
2.导数
2.1.导数的几何意义
2.1.1 切线
由导数定义可知,f(x)在点 (a,f(a))处的斜率:
f
′
(
a
)
=
lim
x
→
a
f
(
x
)
−
f
(
a
)
x
−
a
f′(a)=\lim _{x\rightarrow a}\dfrac{f(x)−f(a)}{x−a}
f′(a)=x→alimx−af(x)−f(a)
所以切线方程可以表示为:
y
−
f
(
a
)
=
f
′
(
a
)
(
x
−
a
)
y-f(a)=f′(a)(x-a)
y−f(a)=f′(a)(x−a)
其中:
- y 是切线上的点的纵坐标。
- f(a) 是函数在点 x=a 处的值。
- f′(a) 是函数在点 x=a 处的导数,即切线的斜率。
- x 是切线上的点的横坐标。
- a 是切点处的横坐标。
化简切线方程:
y
−
f
(
a
)
=
f
′
(
a
)
(
x
−
a
)
=
>
y
=
f
′
(
a
)
x
−
a
f
′
(
a
)
+
f
(
a
)
y-f(a)=f′(a)(x-a)=>y=f'(a)x-af'(a)+f(a)
y−f(a)=f′(a)(x−a)=>y=f′(a)x−af′(a)+f(a)
将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。
2.1.2 法线
是与切线垂直的直线。切线的斜率为f’(a),则法线的斜率为
−
1
f
′
(
a
)
-\dfrac{1}{f'(a)}
−f′(a)1
法线方程的一般形式是:
y
−
f
(
a
)
=
−
1
f
′
(
a
)
(
x
−
a
)
y−f(a)=−\dfrac{1}{f′(a)}(x−a)
y−f(a)=−f′(a)1(x−a)
其中:
- y 是法线上的点的纵坐标。
- f(a是函数在点 x=a处的值。
- f′(a)是函数在点 x=a处的导数,即切线的斜率。
- x 是法线上的点的横坐标。
- a 是法线点处的横坐标。
化简法线方程:
将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。
2.2.可导与连续的关系
2.2.1 定义
连续性
一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:
lim
x
→
a
f
(
x
)
=
f
(
a
)
或者
lim
h
→
0
f
(
a
+
h
)
−
f
(
a
)
=
0
\lim _{x\rightarrow a}f(x)=f(a)或者\lim _{h\rightarrow 0}f(a+h)-f(a)=0
x→alimf(x)=f(a)或者h→0limf(a+h)−f(a)=0
这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。
可导性
一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:
f
′
(
a
)
=
lim
h
→
0
f
(
a
+
h
)
−
f
(
a
)
h
f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h}
f′(a)=h→0limhf(a+h)−f(a)
这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。
所以从连续和可导定义看出,可导的条件比连续的条件更严格。
2.2.2 定理
1.可导性蕴含连续性
如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。
证明:如果函数 f(x) 在点 x=a处可导,则
f
′
(
a
)
=
lim
h
→
0
f
(
a
+
h
)
−
f
(
a
)
h
f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h}
f′(a)=h→0limhf(a+h)−f(a)
我们要证f(x)在点 x=a 处连续,需要证明
lim
x
→
a
f
(
x
)
=
f
(
a
)
\lim _{x\rightarrow a}f(x)=f(a)
x→alimf(x)=f(a)
变换上述等式:
lim
x
→
a
(
f
(
x
)
−
f
(
a
)
)
=
lim
x
→
a
(
f
(
x
)
−
f
(
a
)
x
−
a
(
x
−
a
)
)
=
lim
x
→
a
f
(
x
)
−
f
(
a
)
x
−
a
.
lim
x
→
a
(
x
−
a
)
=
f
′
(
a
)
.
0
=
0
\lim _{x\rightarrow a}(f(x)-f(a))=\lim _{x\rightarrow a}(\dfrac{f(x)-f(a)}{x-a}(x-a))=\lim _{x\rightarrow a}\dfrac{f(x)-f(a)}{x-a}.\lim _{x\rightarrow a}(x-a)=f'(a).0=0
x→alim(f(x)−f(a))=x→alim(x−af(x)−f(a)(x−a))=x→alimx−af(x)−f(a).x→alim(x−a)=f′(a).0=0
所以
lim
x
→
a
f
(
x
)
=
f
(
a
)
\lim _{x\rightarrow a}f(x)=f(a)
x→alimf(x)=f(a)
2.连续性不一定蕴含可导性
反例:考虑函数 f(x)=∣x|在 x=0处是否可导。
证明:
连续性:
lim
x
→
0
∣
x
∣
=
0
=
f
(
0
)
\lim _{x\rightarrow 0}|x|=0=f(0)
x→0lim∣x∣=0=f(0)
函数是连续的
可导性:
左导数:
f
−
′
(
0
)
=
lim
h
→
0
−
f
(
h
+
0
)
−
f
(
h
)
h
=
lim
h
→
0
−
−
h
−
0
h
=
−
1
f_{-}'(0)=\lim _{h\rightarrow 0^{-}}\dfrac{f(h+0)-f(h)}{h}=\lim _{h\rightarrow 0^{-}}\dfrac{-h-0}{h}=-1
f−′(0)=h→0−limhf(h+0)−f(h)=h→0−limh−h−0=−1
右导数:
f
+
′
(
0
)
=
lim
h
→
0
+
f
(
0
+
h
)
−
f
(
h
)
h
=
lim
h
→
0
+
h
−
0
h
=
1
f_{+}'(0)=\lim _{h\rightarrow 0^{+}}\dfrac{f(0+h)-f(h)}{h}=\lim _{h\rightarrow 0^{+}}\dfrac{h-0}{h}=1
f+′(0)=h→0+limhf(0+h)−f(h)=h→0+limhh−0=1
左右导数不相等,所以函数不是可导的。
2.3.求导公式
2.3.1 求导规则
-
常数规则:
d d x ( c ) = 0 \dfrac{d}{dx}(c)=0 dxd(c)=0其中 c 是常数。
-
幂函数规则:
d d x ( x n ) = n x n − 1 \dfrac{d}{dx}(x^{n})=nx^{n−1} dxd(xn)=nxn−1其中 n 是任意实数。
-
常数倍规则:
d d x ( c ⋅ f ( x ) ) = c ⋅ f ′ ( x ) 或 ( c v ) ′ = c v ′ \dfrac{d}{dx}(c⋅f(x))=c⋅f′(x)或(cv)'=cv' dxd(c⋅f(x))=c⋅f′(x)或(cv)′=cv′其中 c 是常数。
-
和差规则:
d d x ( f ( x ) ± g ( x ) ) = f ′ ( x ) ± g ′ ( x ) 或 ( u ± v ) ′ = u ′ ± v ′ \dfrac{d}{dx}(f(x)±g(x))=f′(x)±g′(x)或(u±v)'=u'±v' dxd(f(x)±g(x))=f′(x)±g′(x)或(u±v)′=u′±v′ -
乘积规则:
d d x ( f ( x ) ⋅ g ( x ) ) = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) 或 ( u v ) ′ = u ′ v + u v ′ \dfrac{d}{dx}(f(x)⋅g(x))=f′(x)⋅g(x)+f(x)⋅g′(x)或(uv)'=u'v+uv' dxd(f(x)⋅g(x))=f′(x)⋅g(x)+f(x)⋅g′(x)或(uv)′=u′v+uv′ -
商规则:
d d x ( f ( x ) g ( x ) ) = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) [ g ( x ) ] 2 或 ( u v ) ′ = u ′ v − u v ′ v 2 \dfrac{d}{dx}(\dfrac{f(x)}{g(x)})=\dfrac{f′(x)⋅g(x)−f(x)⋅g′(x)}{[g(x)]^{2}}或(\dfrac{u}{v})'=\dfrac{u'v-uv'}{v^{2}} dxd(g(x)f(x))=[g(x)]2f′(x)⋅g(x)−f(x)⋅g′(x)或(vu)′=v2u′v−uv′其中 g(x)≠0。
-
链式法则(复合函数求导):
d d x ( f ( g ( x ) ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) 或 d y d x = d y d u . d u d x \dfrac{d}{dx}(f(g(x)))=f′(g(x))⋅g′(x)或\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx} dxd(f(g(x)))=f′(g(x))⋅g′(x)或dxdy=dudy.dxdu
2.3.2 常见函数的求导公式
-
指数函数:
d d x ( e x ) = e x \dfrac{d}{dx}(e^{x})=e^{x} dxd(ex)=exd d x ( a x ) = a x l n ( a ) \dfrac{d}{dx}(a^{x})=a^{x}ln(a) dxd(ax)=axln(a)
其中 a>0且 a≠1。
-
对数函数:
d d x ( l n x ) = 1 x \dfrac{d}{dx}(lnx)=\dfrac{1}{x} dxd(lnx)=x1d d x ( l o g a ( x ) ) = 1 x l n ( a ) \dfrac{d}{dx}(log_{a}(x))=\dfrac{1}{xln(a)} dxd(loga(x))=xln(a)1
其中 a>0且 a≠1。
-
三角函数:
d d x ( s i n ( x ) ) = c o s ( x ) \dfrac{d}{dx}(sin(x))=cos(x) dxd(sin(x))=cos(x)d d x ( c o s ( x ) ) = − s i n ( x ) \dfrac{d}{dx}(cos(x))=−sin(x) dxd(cos(x))=−sin(x)
d d x ( t a n ( x ) ) = s e c 2 ( x ) = 1 c o s 2 ( x ) \dfrac{d}{dx}(tan(x))=sec^{2}(x)=\dfrac{1}{cos^{2}(x)} dxd(tan(x))=sec2(x)=cos2(x)1
-
反三角函数:
d d x ( a r c s i n ( x ) ) = 1 1 − x 2 \dfrac{d}{dx}(arcsin(x))=\dfrac{1}{\sqrt{1-x^{2}}} dxd(arcsin(x))=1−x21d d x ( a r c c o s ( x ) ) = − 1 1 − x 2 \dfrac{d}{dx}(arccos(x))=−\dfrac{1}{\sqrt{1-x^{2}}} dxd(arccos(x))=−1−x21
d d x ( a r c t a n ( x ) ) = 1 1 + x 2 \dfrac{d}{dx}(arctan(x))=\dfrac{1}{1+x^{2}} dxd(arctan(x))=1+x21
2.4.高阶导数
高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作
f
′
′
(
x
)
或
d
2
y
d
x
2
f''(x) 或 \dfrac{d^{2}y}{dx^{2}}
f′′(x)或dx2d2y
。类似地,三阶导数是对二阶导数再求导,记作
f
′
′
′
(
x
)
或
d
3
y
d
x
3
f'''(x)或 \dfrac{d^{3}y}{dx^{3}}
f′′′(x)或dx3d3y
,以此类推。
2.4.1定义
对于一个函数 f(x),其 n 阶导数定义为:
f
(
n
)
(
x
)
=
d
n
y
d
x
n
f^{(n)}(x)=\dfrac{d^{n}y}{dx^{n}}
f(n)(x)=dxndny
其中 n是正整数。
高阶导数的符号表示
-
一阶导数:
f ′ ( x ) 或 d y d x f′(x)或 \dfrac{dy}{dx} f′(x)或dxdy -
二阶导数:
f ′ ′ ( x ) 或 d 2 y d x 2 f''(x) 或 \dfrac{d^{2}y}{dx^{2}} f′′(x)或dx2d2y -
三阶导数:
f ′ ′ ′ ( x ) 或 d 3 y d x 3 f'''(x) 或 \dfrac{d^{3}y}{dx^{3}} f′′′(x)或dx3d3y -
n 阶导数:
f ( n ) ( x ) 或 d n y d x n f^{(n)}(x)或\dfrac{d^{n}y}{dx^{n}} f(n)(x)或dxndny
2.5.隐函数求导
隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
d
y
d
x
\dfrac{dy}{dx}
dxdy
隐函数求导的基本步骤
- 对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。
- 使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数。
- 通过求导得到的方程,解出 dy/dx。
2.6.参数方程求导
参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:
{
x
=
f
(
t
)
y
=
g
(
t
)
\begin{cases}x=f(t)\\ y=g(t)\end{cases}
{x=f(t)y=g(t)
其中 t 是参数。我们希望求出曲线的导数 dy/dx。
参数方程求导的基本步骤
-
求 x 对 t 的导数:
d x d t = f ′ ( t ) \dfrac{dx}{dt}=f′(t) dtdx=f′(t) -
求 y对 t 的导数:
d y d t = g ′ ( t ) \dfrac{dy}{dt}=g′(t) dtdy=g′(t) -
求 dy/dx:
d y d x = d y d t d x d t = g ′ ( t ) f ′ ( t ) \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g′(t)}{f′(t)} dxdy=dtdxdtdy=f′(t)g′(t)
3.微分
3.1.定义
微分是函数在某个变化过程中的改变量的线性主要部分。
若函数y=f(x)在点x处有导数f’(x)存在,则y因x的变化量△x所引起的改变量
△
y
=
f
(
x
+
△
x
)
−
f
(
x
)
△y=f(x+△x)-f(x)
△y=f(x+△x)−f(x)
可以表示为
△
y
=
f
′
(
x
)
⋅
△
x
+
o
(
△
x
)
△y=f'(x)·△x+o(△x)
△y=f′(x)⋅△x+o(△x)
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,
微分dy可以近似地表示为
d
y
=
f
′
(
x
)
△
x
dy=f'(x)△x
dy=f′(x)△x
,它描述了函数值y随自变量x变化而变化的线性部分。
3.2.可微的充要条件
函数 f(x) 在点 x=a 处可微的充要条件是:
-
函数在点 x=a处连续:
lim x → a f ( x ) = f ( a ) \lim _{x\rightarrow a}f(x)=f(a) x→alimf(x)=f(a) -
函数在点 x=a 处左右导数存在且相等:
f − ′ ( a ) = f + ′ ( a ) f'_{-}(a)=f'_{+}(a) f−′(a)=f+′(a)
简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。
3.3.微分公式与法则
根据微分定义
d
y
=
f
′
(
x
)
d
x
dy=f'(x)dx
dy=f′(x)dx
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。
3.4.微分的几何意义
假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
△
y
=
f
(
x
0
+
△
x
)
−
f
(
x
0
)
△y=f(x_{0}+△x)-f(x_{0})
△y=f(x0+△x)−f(x0)
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
d
y
=
f
′
(
x
0
)
△
x
dy=f'(x_{0})△x
dy=f′(x0)△x
f’(x)是切线的斜率,dy是△y的近似值,如上图所示,所以
△
y
≈
f
′
(
x
0
)
△
x
f
(
x
0
+
△
x
)
=
△
y
+
f
(
x
0
)
≈
f
′
(
x
0
)
△
x
+
f
(
x
0
)
△y\approx f'(x_{0})△x\\ f(x_{0}+△x)=△y+f(x_{0})\approx f'(x_{0})△x+f(x_{0})
△y≈f′(x0)△xf(x0+△x)=△y+f(x0)≈f′(x0)△x+f(x0)
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。
3.5.微分中值定理
3.5.1 罗尔定理
如果函数 f(x)满足以下条件:
- 在闭区间 [a,b]上连续。
- 在开区间 (a,b)上可导。
- 在区间端点的函数值相等,即 f(a)=f(b)。
那么,在开区间 (a,b)内至少存在一点 c,使得:f′©=0
罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。
3.5.2 拉格朗日中值定理
如果函数 f(x)满足以下条件:
- 在闭区间 [a,b] 上连续。
- 在开区间 (a,b)上可导。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
f
′
(
c
)
=
f
(
b
)
−
f
(
a
)
b
−
a
f′(c)=\dfrac{f(b)−f(a)}{b−a}
f′(c)=b−af(b)−f(a)
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。
罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。
3.5.3 柯西中值定理
如果函数 f(x) 和 g(x) 满足以下条件:
- 在闭区间 [a,b]上连续。
- 在开区间 (a,b)上可导。
- 在开区间 (a,b) 内,g′(x)≠0。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
f
′
(
c
)
g
′
(
c
)
=
f
(
b
)
−
f
(
a
)
g
(
b
)
−
g
(
a
)
\dfrac{f′(c)}{g′(c)}=\dfrac{f(b)−f(a)}{g(b)−g(a)}
g′(c)f′(c)=g(b)−g(a)f(b)−f(a)
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。
怎么理解柯西中值定理?
将f(x)和g(x)看作是参数方程:
{
x
=
f
(
t
)
y
=
g
(
t
)
\begin{cases}x=f(t)\\ y=g(t)\end{cases}
{x=f(t)y=g(t)
d y d x = d y d t d x d t = g ′ ( t ) f ′ ( t ) \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g'(t)}{f'(t)} dxdy=dtdxdtdy=f′(t)g′(t)
a、b端点连线的斜率为:
g
(
b
)
−
g
(
a
)
f
(
b
)
−
f
(
a
)
\dfrac{g(b)-g(a)}{f(b)-f(a)}
f(b)−f(a)g(b)−g(a)
根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:
g
′
(
t
)
f
′
(
t
)
=
g
(
b
)
−
g
(
a
)
f
(
b
)
−
f
(
a
)
\dfrac{g'(t)}{f'(t)}=\dfrac{g(b)-g(a)}{f(b)-f(a)}
f′(t)g′(t)=f(b)−f(a)g(b)−g(a)
3.5.4 洛必达法则
洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。
设函数 f(x)和 g(x 满足以下条件:
-
在点 a 的某个去心邻域内可导,且 g′(x)≠0。
-
lim x → a f ( x ) = 0 且 lim x → a g ( x ) = 0 ,或者 lim x → a f ( x ) = ± ∞ 且 lim x → a g ( x ) = ± ∞ 。 \lim _{x\rightarrow a}f(x)=0 且 \lim _{x\rightarrow a}g(x)=0,或者 \lim _{x\rightarrow a}f(x)=±∞ 且 \lim _{x\rightarrow a}g(x)=±∞。 x→alimf(x)=0且x→alimg(x)=0,或者x→alimf(x)=±∞且x→alimg(x)=±∞。
如果
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
x→alimg′(x)f′(x)
存在(或为无穷大),那么:
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
\lim _{x\rightarrow a}\dfrac{f(x)}{g(x)}=\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
x→alimg(x)f(x)=x→alimg′(x)f′(x)