余弦相似度 数学复习笔记

余弦相似度

向量的余弦公式是
c o s = a b ∣ a ∣ ∗ ∣ b ∣ cos=\frac{ab}{|a|*|b|} cos=abab
其中a,b是向量,余弦也叫余弦函数,是三角函数的一种,且余弦定理亦称第二余弦定理,是关于三角形边角关系的重要定理之一。

ab:向量的内积

|a| |b|:表示向量的模

假设向量a:{x1,x2,x3,…,xn},向量b:{y1,y2,y3,…,yn}

a b = ( x 1 ∗ y 1 + x 2 ∗ y 2 + x 3 ∗ y 3 + . . . + x n ∗ y n ) ab=(x1*y1 + x2*y2 + x3*y3 + ... + xn*yn) ab=(x1y1+x2y2+x3y3+...+xnyn)

∣ a ∣ = x 1 ∗ x 1 + x 2 ∗ x 2 + x 3 ∗ x 3 + . . . + x n ∗ x n |a|=\sqrt{x1*x1 + x2*x2 + x3*x3 + ... + xn*xn} a=x1x1+x2x2+x3x3+...+xnxn

∣ b ∣ = y 1 ∗ y 1 + y 2 ∗ y 2 + y 3 ∗ y 3 + . . . + y n ∗ y n |b|=\sqrt{y1*y1 + y2*y2 + y3*y3 + ... + yn*yn} b=y1y1+y2y2+

参考资源链接:[斯坦福CS229机器学习课程:线性代数与概率论笔记](https://wenku.csdn.net/doc/u9ha341r3u?utm_source=wenku_answer2doc_content) 在机器学习中,线性代数和概率论是构建算法模型的数学基础。线性代数通过提供矩阵和向量的运算来处理数据结构,例如特征值分解和奇异值分解在降维算法PCA中起着核心作用。向量内积用于度量特征间的相似性,如在文本分析中的余弦相似度计算;向量外积则用于生成对称矩阵,这在协方差矩阵的计算中非常关键。矩阵乘法在神经网络的前向传播和反向传播中扮演重要角色。 概率论对于理解算法中的不确定性至关重要。随机变量及其分布函数帮助我们描述数据的随机性质,这对于模型的统计推断尤为关键。例如,朴素贝叶斯分类器利用概率论中的贝叶斯定理来计算后验概率,概率图模型如马尔可夫随机场在处理图像和自然语言处理中的复杂结构时也依赖于概率论。 黄海广编写的《斯坦福CS229机器学习课程:线性代数与概率论笔记》能够为学习者提供与CS229课程相关的系统复习材料,涵盖了机器学习所需线性代数和概率论的基础知识,使学习者能够在理论和实践中更好地理解机器学习算法的数学原理。这对于希望深入学习机器学习的学者和工程师而言,是一份宝贵的资料。 参考资源链接:[斯坦福CS229机器学习课程:线性代数与概率论笔记](https://wenku.csdn.net/doc/u9ha341r3u?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值