余弦相似度
向量的余弦公式是
c o s = a b ∣ a ∣ ∗ ∣ b ∣ cos=\frac{ab}{|a|*|b|} cos=∣a∣∗∣b∣ab
其中a,b是向量,余弦也叫余弦函数,是三角函数的一种,且余弦定理亦称第二余弦定理,是关于三角形边角关系的重要定理之一。
ab:向量的内积
|a| |b|:表示向量的模
假设向量a:{x1,x2,x3,…,xn},向量b:{y1,y2,y3,…,yn}
则
a b = ( x 1 ∗ y 1 + x 2 ∗ y 2 + x 3 ∗ y 3 + . . . + x n ∗ y n ) ab=(x1*y1 + x2*y2 + x3*y3 + ... + xn*yn) ab=(x1∗y1+x2∗y2+x3∗y3+...+xn∗yn)
∣ a ∣ = x 1 ∗ x 1 + x 2 ∗ x 2 + x 3 ∗ x 3 + . . . + x n ∗ x n |a|=\sqrt{x1*x1 + x2*x2 + x3*x3 + ... + xn*xn} ∣a∣=x1∗x1+x2∗x2+x3∗x3+...+xn∗xn
∣ b ∣ = y 1 ∗ y 1 + y 2 ∗ y 2 + y 3 ∗ y 3 + . . . + y n ∗ y n |b|=\sqrt{y1*y1 + y2*y2 + y3*y3 + ... + yn*yn} ∣b∣=y1∗y1+y2∗y2+