hdu 1150

最小点覆盖数等于最大匹配数

此题为匈牙利算法模板题

///A机器有N种模式,B机器有M种模式

///K件产品,每件产品可以由a模式或者b模式完成

///问最少切换多少次模式可以完成K件产品


///解题思路:   N种模式作为X集合,M种模式作为Y集合

///它们之间的连线表示两者取其中之一就可完成产品


///问题转化为最小点覆盖集,既求最大匹配数


///匈牙利算法求解二分图的最大匹配数

/*
#include <iostream>
#include<cstring>
using namespace std;
const int maxn = 105;
int g[maxn][maxn];
int x[maxn], y[maxn];
bool vis[maxn];
int n, m;
bool dfs(int u){
    for(int v=1; v<=m; v++){
        if(g[u][v] && !vis[v]){
            vis[v] = true;
            if(y[v] == -1 || dfs(y[v])){
                y[v] = u;
                x[u] = v;
                return true;
            }
        }
    }
    return false;
}
int hungary(){
    int ans = 0;
    memset(x, -1, sizeof(x));
    memset(y, -1, sizeof(y));
    for(int u=1; u<=n; u++){
        if(x[u] == -1){
             memset(vis, false, sizeof(vis));
             if(dfs(u)){
                ans++;
             }
        }

    }
    return ans;
}
int main()
{
    int  k;
    while(cin >> n){
        memset(g, 0, sizeof(g));
        if(n == 0)
            break;
        cin >> m >> k;
        int j, u, v;
        for(int i=0; i<k; i++){
            cin >> j >> u >> v;
            g[u][v] = 1;
        }
        int ans = hungary(u);
        cout << ans << endl;
    }
    return 0;
}*/
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = 200;
int linker[maxn];
int g[maxn][maxn];
bool vis[maxn];
int n, m;
int dfs(int u){
    for(int v=1; v<=m; v++){
        if(g[u][v] && !vis[v]){
            vis[v] = true;
            if(linker[v] == -1 || dfs(linker[v])){
               linker[v] = u;
               return 1;
            }
        }
    }
    return 0;
}
int hungary(int u){
    int ans = 0;
    memset(linker, -1, sizeof(linker));
    for(int u=1; u<=n; u++){
        memset(vis, false, sizeof(vis));
        if(dfs(u))
            ans++;
    }
    return ans;
}
int main(){
    int k;
    while(cin >> n && n){
        cin >> m >> k;
        memset(g, 0, sizeof(g));
        int j, u, v;
        for(int i=1; i<=k; i++){
            cin >> j >> u >> v;
            g[u][v] = 1;
        }
        int ans = hungary();
        cout << ans << endl;
    }
    return 0;
}
///for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either
///in machine A at mode_x, or in machine B at mode_y.

/*
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0
*/

/*
3
3
*/


linjiebiao   ac code
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 200;
int linker[maxn];
bool vis[maxn];
struct node{
    int to;
    int cost;
    node(int t, int c): to(t), cost(c){}
};
vector<node>g[maxn];
int n, m;
int dfs(int u){

    for(int i=0; i<g[u].size(); i++){
        node e = g[u][i];
        if(e.cost && !vis[e.to]){
            vis[e.to] = true;
            if(linker[e.to] == -1 ||  dfs(linker[e.to])){
                linker[e.to] = u;
                return true;
            }
        }
    }
    return false;
}
int hungary(){
    int ans = 0;
    memset(linker, -1, sizeof(linker));
    for(int u=1; u<=n; u++){
        memset(vis, false, sizeof(vis));
        if(dfs(u))
            ans++;
    }
    return ans;
}
int main(){
    int k;
    while(cin >> n && n){
        for(int i=0; i<maxn; i++){
            g[i].clear();
        }

        cin >> m >> k;
        int j, u, v;
        for(int i=0; i<k; i++){
            cin >> j >> u >> v;
            g[u].push_back(node(v, 1));
        }
        int ans = hungary();
        cout << ans << endl;
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值