笔记
吱zzz
这个作者很懒,什么都没留下…
展开
-
R-MAC(Regional Maximum Activation of Convolutions)
R-MAC (regionalmaximum Activation of Convolutions)被表示为图像中局部特征的累加器,作为一种判别全局图像表示。R-MAC的概述如下。在卷积特征图中,我们以滑动窗口的方式对正方形区域进行采样,在所有的s = 1,…,s中,相邻窗口之间有40%的重叠。采样区域大小可以计算为:Rs = 2min(W,H)/(s+1),其中W和H分别为特征图的宽度和高度。R-MAC对区域特征图进行采样后,对所有区域特征图进行最大池化处理,并进行标准化处理,如l2归一化和pca -白化原创 2020-05-12 11:47:33 · 1526 阅读 · 0 评论 -
感知哈希 ,平均哈希,差异值哈希
颜色空间下的图片相似性计算如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入如何改变文本的样式强调文本 强调文本加粗文本 加粗文本标记文本删除文本引用...原创 2020-04-09 20:57:53 · 753 阅读 · 0 评论 -
哈希算法——论文整理(未完)
目前主流的哈希算法主要分为有监督哈希算法、半 监督哈希算法和无监督哈希算法。其中,有监督或半监 督的哈希算法在学习过程中,使用监督信息以提高哈希 算法的质量,如监督的核哈希(Kernel-based Supervised Hashing,KSH)、深 度 监 督 哈 希(DSH)、半 监 督 哈 希 算法(Semi-Supervised Hashing,SSH)等,无监督的哈希算法则使用无标签的数...原创 2020-04-08 09:57:27 · 1810 阅读 · 0 评论 -
视觉词袋模型算法
视觉词袋模型属于基于内容的图像检索中的算 法,其实现主要依赖于图像特征提取和词典构建。视觉词袋模型算法的步骤如下步骤1. 特征提取。在训练阶段,将一个图像 划分为“块” (patch)。其中选取特征提取算法是关键 步骤,提取的每个图像关键点都是一个 patch,每 一个 patch 用 128 维特征向量表示。步骤 2. 词典构建。假设有 M 幅训练图像,提 取图像集合中全部的 patch,...原创 2020-04-07 13:38:47 · 795 阅读 · 0 评论 -
knn算法
转载自https://www.cnblogs.com/jyroy/p/9427977.html作者:JYRoy一、KNN算法概述邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。Cover和Hart在1968年提出了最初的邻近算法。KNN是...原创 2020-04-01 11:05:25 · 495 阅读 · 0 评论 -
颜色矩
颜色矩一种非常简单而有效的颜色特征使由Stricker和Orengo所提出的颜色矩(color moments) [7]。这种方法的数学基础在于图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。与颜色直方图相比,该方法的另一个好处在于无需对特征进行...原创 2020-04-01 10:25:59 · 2818 阅读 · 0 评论 -
颜色相关图
颜色相关图颜色相关图(color correlogram)是图像颜色分布的另一种表达方式[16]。这种特征不但刻画了某一种颜色的像素数量占整个图像的比例,还反映了不同颜色对之间的空间相关性。传统的颜色直方图只考虑了颜色信息,缺少空间位置信息。颜色自动相关图是一种简化的变种,考虑相同颜色之间的空间关系,假设图像的记号为I(x,y),x、y为空间坐标;包含的颜色有C1,C2,C3…Cn.设置两种...原创 2020-04-01 10:02:36 · 1341 阅读 · 0 评论