目前主流的哈希算法主要分为有监督哈希算法、半 监督哈希算法和无监督哈希算法。其中,有监督或半监 督的哈希算法在学习过程中,使用监督信息以提高哈希 算法的质量,如监督的核哈希(Kernel-based Supervised Hashing,KSH)、深 度 监 督 哈 希(DSH)、半 监 督 哈 希 算法(Semi-Supervised Hashing,SSH)等,无监督的哈希算法则使用无标签的数据学习一系列的哈希函数, 代表方法有:位置敏感哈希(Local Sensitive Hashing, LSH)、谱 哈 希(Spectral Hashing,SH)、迭代量化哈希算法(Iterative Quantization,ITQ)等。这些方法都需要人工提取图像的视觉特征,很容易降低哈希编码的性能。
相比于无监督的哈希算法,有监督的哈希算法利用
图像数据的标签信息作为监督信息,一般都是数据相关的,即不具有数据通用性,但有监督的算法通常可以学习到一个更加紧凑的哈希编码,而且效果也比无监督哈希算法好
采用深度学习提取哈希编码的方法CNNH+, DNNH, DLBHC.
CNNH+通过构造相似矩阵,使得矩阵中的每个元 素及其相应位置代表着两张图像的相似情况,并将相似矩阵进行分解获取每张图像对应的二进制哈希编码,最终由 CNN网络来对给定的哈希编码进行拟合,获得了较好的图像检索效果。
DNNH提出了一种Network in Network的网络结构,其主要特点在于利用Mlpconv结构替代了传统的卷积, 并采用了大量的小卷积结构,有效减小了网络的参数,提升了网络的特征表达能力。此外,DNNH采用Triplet_ Loss对网络进行训练,使得得到的汉明空间中相似图像 的距离小于不相似图像之间的距离,所以获得的哈希编码更能描绘不同图像之间的差异。
DLBHC在预先训练好的CNN网络的最后一个全连
接层和倒数第二个全连接层之间添加额外的一个全连接层, 并通过sigma函数对该层输出进行约束来实现哈希编码的生成。其主要特点在于构思简单,但是由于哈希编码的获取并没有直接被损失函数约束,因此获取的哈希编码并不能充分地表达图像的本身内容。
参考论文:基于哈希编码和卷积神经网络的图像检索方法
基于双线性模型的图像检索技术