感知哈希 ,平均哈希,差异值哈希

本文深入探讨了三种图像哈希技术:平均哈希、感知哈希和差异值哈希。详细介绍了每种技术的实现步骤,包括图片缩放、灰度化、离散余弦变换等关键操作,以及如何生成哈希值。对于图像相似性检测和版权保护有重要应用价值。
摘要由CSDN通过智能技术生成

感知哈希 ,平均哈希,差异值哈希


平均哈希
1.图片缩放,一般为8 8,或者3232

2.将图片灰度化

3.求平均值,并根据平均值将每一个像素二值化

4.将8*8=64位bit,每8个比特为一个十六进制值,转换成字符串,生成哈希值(指纹)

感知哈希
1.图片缩放 为32*32大小

2.将图片灰度化

3.对图片进行离散余弦变换(DCT),转换的频域

4.取频域左上角8*8大小(图片的能量都集中在低频部分,低频位于左上角)

5.计算64个DCT系数的均值平均值,并计算平均值二值化(同平均哈希)

6.生成哈希值

差异值哈希
1.图片缩放为9*8大小

2.将图片灰度化

3.差异值计算(每行相邻像素的差值,这样会生成8*8的差值,前一个像素大于后一个像素则为1,否则为0)

4.生成哈希值

import cv2
import numpy as np
import matplotlib.pylab as plt
def mean_hash(img):
    "均值哈希"
    img_s=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
    img_gray=cv2.cvtColor(img_s,cv2.COLOR_BGR2GRAY)
    s=0
    hash_str=''
    for i in range(8):
        for j in range(8):
            s=s+img_gray[i,j]
    mean=s/64
    for i in range(8):
        for j in range(8):
            if img_gray[i,j]>mean:
                hash_str=hash_str+'1'
            else:
                hash_str=hash_str+'0'
    return hash_str
def diff_hash(img):
    # 差值感知算法
    img_s=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
    img_gray=cv2.cvtColor(img_s,cv2.COLOR_BGR2GRAY)
    hash_str=''
    for i in range(8):
        for j in range(8):
            if img_gray[i,j]>img_gray[i+1,j]:
                hash_str=hash_str+'1'
            else:
                hash_str=hash_str+'0'

    return hash_str
def per_hash(img):
  
    img_s=cv2.resize(img,(32,32),interpolation=cv2.INTER_CUBIC)
    
    img_gray=cv2.cvtColor(img_s,cv2.COLOR_BGR2GRAY)
    img_gray=np.float32(img_gray)
    img_DCT=cv2.dct(img_gray)
   
    s=0
    hash_str=''
    for i in range(8):
        for j in range(8):
            s=img_DCT[i,j]+s
    mean=s/64
    for i in range(8):
        for j in range(8):
            if img_DCT[i,j]>mean:
                img_DCT[i,j]=1
                hash_str=hash_str+'1'
            else:
                img_DCT[i, j] = 0
                hash_str+='0'
    cv2.imshow(' ',img_DCT)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return hash_str

参考: https://blog.csdn.net/qq_32799915/article/details/81000437

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值