Java 实现 堆排序 快速排序 以及 TopK问题(二)

接上文


已知快速排序可以将一个数组分成两部分,一部分大于某个值,一部分小于某个值,那么由这点可以推出取TopK值的方法如下:


假设快排每一趟的分割值的点为p,数组长度为n,那么需要比较n-p与k,如果恰好K==n-p,那么只需要取p点之后的所有值就行了。
如果k<n-p,那么递归右边至下一趟,k不变
如果k>n-p,先输出右边的n-p个值,再递归左边寻找Top(k-n+p)值


代码如下

public class quickSort {


	 public static void main(String[] args)  {
	     int[] arr={5,62,81,63,13,43,34,5,8,9,6,44};
	     int k=5;
	     
	     quickSor(arr,0,arr.length-1,k);
	     
	 }


	private static void quickSor(int[] arr, int i, int j, int k) {
		if(i<j){
			int pos=partition(arr, i, j);
//			print(arr,i,j);
//			System.out.println(pos);
			int temp=j-pos;
			if(temp==k){
				print(arr,pos+1,j);
				return;
			}
			else if(temp<k){
				print(arr,pos+1,j);
				quickSor(arr,i,pos,k-temp);
			}
			else if(temp>k){
				quickSor(arr,pos+1,j,k);
			}
		}
	}
	
	private static void print(int[] arr, int i, int j) {
		for(int x=i;x<=j;x++)
			System.out.print(arr[x]+" ");
	}


	private static int partition(int n[], int left, int right) { 
        int pivot = n[left]; 
        while (left < right) { 
            while (left < right && n[right] >= pivot) 
                right--; 
            if (left < right) 
                n[left++] = n[right]; 
            while (left < right && n[left] <= pivot) 
                left++; 
            if (left < right) 
                n[right--] = n[left]; 
        } 
        n[left] = pivot; 
        return left; 
    } 
}





输出为63 81 62 43 44  省去了给TOPK排序的消耗,我认为这种方式是最高效率的

没有更多推荐了,返回首页