特征方程:散射与M函数方法解析
1. 有限紧凑图的正谱与散射矩阵
对于由 $N$ 条边 $E_n$($n = 1, 2, \cdots, N$)构成的任意有限图 $\Gamma$,每条边 $E_n = [x_{2n - 1}, x_{2n}]$ 都对应一个边散射矩阵 $S^n_e$。由此可引入块对角边散射矩阵 $S_e$:
[
S_e(k) = \text{diag} {S^n_e (k)}^N_{n = 1} =
\begin{pmatrix}
S^1_e (k) & 0_2 & 0_2 & \cdots & 0_2 \
0_2 & S^2_e (k) & 0_2 & \cdots & 0_2 \
0_2 & 0_2 & S^3_e (k) & \cdots & 0_2 \
\vdots & \vdots & \vdots & \ddots & \vdots \
0_2 & 0_2 & 0_2 & \cdots & S^N_e (k)
\end{pmatrix}
]
其中 $0_2$ 表示 $2 \times 2$ 的零矩阵。
设 $\psi$ 是对应于某个正特征值 $\lambda > 0$ 的薛定谔方程的特征函数。对于每条边 $E_n$,考虑扩展到整个实数线 $\mathbb{R} \supset [x_{2n - 1}, x_{2n}]$ 的薛定谔方程。函数 $\psi| {E_n}$ 满足 $E_n$ 上的特
超级会员免费看
订阅专栏 解锁全文
34

被折叠的 条评论
为什么被折叠?



