光学理论:散射、全息与相干断层成像技术解析
1. 光学散射理论
光学散射理论描述了单色光在具有由折射率 (n(x)) 定义空间结构的介质中的前向和后向散射。它是基于散射的光学断层成像技术的基础,但不同技术采用不同方法来测量样本的散射特性。
散射的原因是折射率的不均匀性。为了从数学上描述它,将波动方程修改为具有位置相关的折射率 (n):
[
\nabla^{2}U(x, t) - \frac{n^{2}(x)}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} U(x, t) = 0
]
这个波动方程不再直接从麦克斯韦方程组推导得出,但在大多数实际情况下是一个很好的近似。引入与时间无关的波函数 (U(x)),可得:
[
\nabla^{2}U(x) + k^{2}n^{2}(x)U(x) = 0
]
1.1 格林函数
对于非齐次波动方程的数学分析,需要亥姆霍兹方程的格林函数 (G(x)),其定义为:
[
\nabla^{2}G(x) + k_{0}^{2}G(x) = \delta^{(3)}(x)
]
其中 (\delta^{(3)}) 是三维 (\delta) 分布。这个函数可以在傅里叶空间中推导得出:
[
G(x) = \frac{1}{(2\pi)^{3}} \int d^{3}k \tilde{G}(k)e^{+ik \cdot x}
]
使用 (\delta) 分布的傅里叶表示:
[
\delta^{(3)}(x) = \frac{1}{(2\
超级会员免费看
订阅专栏 解锁全文
26

被折叠的 条评论
为什么被折叠?



