线性代数-复习总纲

我的教材是:江西高校出版社的线性代数

我省去了一些容易记住且没必要的定义或定理(很少)

行列式

  • 行列式基本性质

    1. D = D T D^T DT
    2. 互换2行/列,改变符号
    3. 可由某行/列拆成2个行列式
    4. 可由某行/列提公因子
    5. 某行/列加另一行/列乘k,值不变
  • 题型:P12

    1. 三角形行列式
    2. 镶边法
    3. 类三角行列式
  • 推论(异乘变零):任一行/列与另一行/列对应元素的代数余子式乘积之和为0

  • 范德蒙行列式:P20

    D n = ∣ 1 1 ⋅ ⋅ ⋅ 1 x 1 x 2 ⋅ ⋅ ⋅ x n x 1 2 x 2 2 ⋅ ⋅ ⋅ x n 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ x 1 n − 1 x 2 n − 1 ⋅ ⋅ ⋅ x n n − 1 ∣ = ∏ n ≥ i > j ≥ 1 ( x i − x j ) D_n = \begin{vmatrix}1&1&···&1\\x_1&x_2&···&x_n\\x_1^2&x_2^2&···&x_n^2\\···&···&···&···\\x_1^{n-1}&x_2^{n-1}&···&x_n^{n-1}\\\end{vmatrix} = \prod_{n\geq i > j \geq 1}(x_i - x_j) Dn=1x1x12x1n11x2x22x2n11xnxn2xnn1=ni>j1(xixj)

    其中“ ∏ \prod ” 是表示全体同类因子的乘积

    • 第一行全是1
    • x 1 x_1 x1 x n x_n xn次方递增
  • 克莱姆法则:P22

    • 未知数个数等于方程个数
    • 系数行列式 D ≠ \neq = 0

n维向量

  • 行向量 α = ( a 1 a_1 a1, a 2 a_2 a2, a 3 a_3 a3, ···, a n a_n an) 列向量 α T α^T αT = $$ \begin{bmatrix} a_1 \ a_2 \ ··· \ a_n \end{bmatrix} \$$

  • 线性组合 :α = λ 1 α 1 + λ 2 α 2 + ⋅ ⋅ ⋅ + λ m α m λ_1α_1 + λ_2α_2 + ··· + λ_mα_m λ1α1+λ2α2++λmαm

  • 线性相关 k 1 α 1 + k 2 α 2 + ⋅ ⋅ ⋅ + k m α m = 0 k_1α_1 + k_2α_2 + ··· + k_mα_m = 0 k1α1+k2α2++kmαm=0 ,若 k 1 k_1 k1~ k m k_m km不全为0,则线性相关

  • 线性相关 ⇔ \Leftrightarrow D = 0 ; 线性无关 ⇔ \Leftrightarrow D ≠ \neq = 0

  • 定理一: m个n维向量组线性相关 ⇔ \Leftrightarrow 至少一个向量可以由其余m-1个向量表示

    • 性质1: 包含零向量的向量组必线性相关
    • 性质2: 线性相关 ⇔ \Leftrightarrow 各对应分量成比例
    • 性质3: 向量部分现象相关 ⇒ \Rightarrow 整个向量组线性相关
    • 性质4: 向量组线性无关 ⇒ \Rightarrow 向量组任意部分线性无关
  • 定理二: 设向量组线性无关,加入向量β后线性相关 ⇒ \Rightarrow β可由原向量组线性表示

  • 定理三: 如r维向量组 α i α_i αi线性无关 ⇒ \Rightarrow r+1维向量组 β i β_i βi也线性无关

  • 定理四: n+1个n维向量组必线性相关

    • 推论 (P44): a 1 a_1 a1, a 2 a_2 a2, ···, a m a_m am 都是n维向量,若m>n 则比线性相关
  • 向量组等价: 若向量组A可由向量组B表示,向量组B可由向量组A表示,则两向量组等价

    • 反身性: 自己与自己等价
    • 对称性: A与B等价,则B与A等价
    • 传递性: A与B等价,B与C等价,则A与C等价
  • 定义9: 若一个向量组中的部分向量组 a 1 a_1 a1, a 2 a_2 a2, ···, a m a_m am 满足:

    1. a 1 a_1 a1, a 2 a_2 a2, ···, a m a_m am 线性无关
    2. 向量组中任一向量可由 a 1 a_1 a1, a 2 a_2 a2, ···, a m a_m am 表示

    a 1 a_1 a1, a 2 a_2 a2, ···, a m a_m am最大无关组

  • 定理五

    • 推论1: 两线性无关且等价的向量组,一定包含相同个数的向量
    • 推论2: 同意向量组的极大无关组包含向量个数相同
    • 推论3: 等价的向量组有相同的秩
  • 定义11: 集合V对乘和加运算封闭,则V为向量空间

  • 定义13: 在向量空间V中,存在r个向量 a 1 a_1 a1, a 2 a_2 a2, ···, a r a_r ar 满足:

    1. a 1 a_1 a1, a 2 a_2 a2, ···, a r a_r ar 线性无关

    2. r中任一向量可由 a 1 a_1 a1, a 2 a_2 a2, ···, a r a_r ar 线性表示

      则向量组 a 1 a_1 a1, a 2 a_2 a2, ···, a r a_r ar 为V的一组,r为维数

矩阵

  • 矩阵乘法不满足交换律 AB ≠ \neq = BA

  • 非零矩阵乘积可能为零矩阵 AB = AC ≠ \neq => B = C

  • 转置矩阵

    1. ( A T ) T (A^T)^T (AT)T = A
    2. ( A + B ) T (A+B)^T (A+B)T = A T A^T AT + B T B^T BT
    3. ( λ A ) T (λA)^T (λA)T = λ A T A^T AT
    4. ( A B ) T (AB)^T (AB)T = B T B^T BT A T A^T AT
  • 对称矩阵

    • 一定是方阵
    1. A T A^T AT = A
  • 方阵

    1. A k A^k Ak A l A^l Al = A ( k + l ) A^{(k+l)} A(k+l)
    2. ( A k ) l (A^k)^l (Ak)l = A k l A^{kl} Akl
  • 对角矩阵 diag( λ 1 λ_1 λ1, λ 2 λ_2 λ2, ···, λ n λ_n λn)

    • 对角矩阵相乘可以互换
    1. 单位矩阵 E

      • 主对角线全是1,其余全是0
      1. AE = EA = A
    2. 数量矩阵 λE

  • 定义8: 方阵A的行列式,记为 |A|

    1. | A T A^T AT| = | A A A|
    2. |λA| = λ n λ^n λn|A|
    3. |AB| = |A||B|
  • 定义9: 若|A| ≠ \neq = 0 , 则A为非奇异矩阵

  • 定义10: 对于n阶方阵A,如果一个n阶方阵B,使 AB = BA = E ,则 A为可逆矩阵,B为A的逆矩阵,记为 B= A − 1 A^{-1} A1

  • 定理一: 方阵A可逆 ⇔ \Leftrightarrow |A| ≠ \neq = 0

    • 推论: 若AB = E , 则 B = A − 1 A^{-1} A1
  • 伴随矩阵 (P70)

    A ∗ A^* A = $$\begin{bmatrix}A_{11}&A_{21}&···&A_{n1}&\ A_{12}&A_{22}&···&A_{n2}&\ ···&···&···&···&\ A_{1n}&A_{2n}&···&A_{nn}&\end{bmatrix} \$$

    • 其中 A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij 注意,这是转置的,小心负号
  • 定理二 A − 1 A^{-1} A1 = A ∗ ∣ A ∣ \frac{A^*}{|A|} AA

  • 逆矩阵的性质

    1. | A − 1 A^{-1} A1| = ∣ A ∣ − 1 |A|^{-1} A1
    2. ( A − 1 ) − 1 (A^{-1})^{-1} (A1)1 =A
    3. ( λ A ) − 1 (λA)^{-1} (λA)1 = λ − 1 A − 1 λ^{-1}A^{-1} λ1A1
    4. ( A B ) − 1 (AB)^{-1} (AB)1 = B − 1 A − 1 B^{-1}A^{-1} B1A1
    5. ( A T ) − 1 (A^T)^{-1} (AT)1 = ( A − 1 ) T (A^{-1})^{T} (A1)T
  • 分块矩阵

    • 准对角矩阵

      A = $$\begin{bmatrix}A_{1}&0&···&0&\ 0&A_{2}&···&0&\ ···&···&···&···&\ 0&0&···&A_{s}&\end{bmatrix} \$$

      1. |A| = ∣ A 1 ∣ ∣ A 2 ∣ ⋅ ⋅ ⋅ ∣ A s ∣ |A_1||A_2|···|A_s| A1A2As
      2. 若 | A| ≠ \neq = 0 ,则A可逆, 且 $$A^{-1} = \begin{bmatrix}A_{1}^{-1}&0&···&0&\ 0&A_{2}^{-1}&···&0&\ ···&···&···&···&\ 0&0&···&A_{s}^{-1}&\end{bmatrix} \$$
  • 定义11: 矩阵A的n个列向量所构成的向量组的秩,即矩阵的秩

  • 定义12:m*n矩阵中任取k行k列,交叉点元素构成的行列式为 k阶子式

  • 定理三: 设矩阵A中一个r阶子式 D ≠ \neq = 0, 且所有包含D的r+1 阶子式都为0,则A的秩为r

    • 推论1: 矩阵A的行向量组与列向量组的秩相等
    • 推论2:
      1. 若A中有一个r阶子式 ≠ \neq = 0,则 R(A) ≥ \geq r
      2. 若A中有r阶子式 = 0, 则 R(A) < r
  • 定理四: R(A+B) ≤ \leq R(A) + R(B)

  • 定理五: R(AB) ≤ \leq min{ R(A), R(B) }

  • 定义13:初等变换

    1. 互换任意两行 ( r i ↔ r j r_i \leftrightarrow r_j rirj
    2. 某一行乘以一个非零数 (k r i r_i ri
    3. ( r i r_i ri+k r j r_j rj )
  • 定义14: 如果A有限次初等变换成B,则A 等价B, A ≅ \cong B (等价的符号找不到,下面应该不是等号而是一根杠)

  • 定理六: 经过初等变化秩不变

  • 定义15: 阶梯矩阵
    在这里插入图片描述

    • R(A) = 非零行数
    • α 1 α_1 α1, α 2 α_2 α2, α 4 α_4 α4 为一个极大无关组
    1. 可以画阶梯型的线
    2. 每次台阶只下一阶
    3. 竖线右边第一个不为0
  • 行最简式

    一个阶梯矩阵,非零行第一个元素为1,且其上方元素全为0

  • 定理七:

    1. 任何一个矩阵都可以化成阶梯矩阵及行最简式
    2. 初等变换不改变列向量的线性相关性和线性表示
  • 定义17: 由E经过一次初等变换得到的方阵叫初等方阵 (都可逆)

  • 定理八 (左行右列): 对矩阵初等行变换相当于在左边乘相应初等方阵

  • 定理九: A = PBQ (P是m阶方阵,Q是n阶方阵) ⇔ \Leftrightarrow A ≅ \cong B

  • 定理十: 方阵A可逆 ⇔ \Leftrightarrow A = p 1 p 2 ⋅ ⋅ ⋅ p 3 p_1p_2 ··· p_3 p1p2p3 (P为初等方阵)

    • 推论: 可逆矩阵可变化为单位矩阵
  • 初等行变换法求逆矩阵

    在这里插入图片描述

  • 定义18: 设 a 1 , a 2 , ⋅ ⋅ ⋅ , a m a_1, a_2, ···, a_m a1,a2,,am β 1 , β 2 , ⋅ ⋅ ⋅ , β m β_1, β_2, ···, β_m β1,β2,,βm ; 是V的两组 ,若 { β 1 = a 11 α 1 + a 21 α 2 + ⋅ ⋅ ⋅ + a m 1 α m … … … … … … … … … … β m = a 1 m α 1 + a 2 m α 2 + ⋅ ⋅ ⋅ + a m m α m \begin{cases}β_1 = a_{11}α_1 + a_{21}α_2 + ··· + a_{m1}α_m \\…………………………\\β_m = a_{1m}α_1 + a_{2m}α_2 + ··· + a_{mm}α_m \\\end{cases} β1=a11α1+a21α2++am1αmβm=a1mα1+a2mα2++ammαm 则 A = $$\begin{bmatrix}a_{11}&a_{12}&···&a_{1m}&\ a_{21}&a_{22}&···&a_{2m}&\ ···&···&···&···&\ a_{m1}&a_{m2}&···&a_{mm}&\end{bmatrix} \$$ 为基 a 1 a_1 a1, a 2 a_2 a2, ···, a m a_m am 到 基 β 1 β_1 β1, β 2 β_2 β2, ···, β m β_m βm过渡矩阵 (可逆,方阵)

    • Y = XA
  • 定理十一: 在基A的坐标是X,在基B的坐标是Y,A是基A到基B的过渡矩阵,则 Y = A − 1 A^{-1} A1X

线性方程组

  • 齐次线性方程组 A x x x = 0 (11)

    1. x 1 = ζ 1 x_1 = ζ_1 x1=ζ1 , x 2 = ζ 2 x_2 = ζ_2 x2=ζ2 为(11)的解,则 x = ζ 1 ζ_1 ζ1+ ζ 2 ζ_2 ζ2 也是(11)的解
    2. x x x = ζ 为 (11)的解,则x = kζ 也是(11)的解
  • 基础解系

    ζ 1 ζ_1 ζ1, ζ 2 ζ_2 ζ2, ···, ζ k ζ_k ζk齐次线性方程组的k个解向量,如果满足

    1. ζ 1 ζ_1 ζ1, ζ 2 ζ_2 ζ2, ···, ζ k ζ_k ζk 线性无关
    2. ζ 1 ζ_1 ζ1, ζ 2 ζ_2 ζ2, ···, ζ k ζ_k ζk 可以线性表示该方程组的任一解向量
  • 定理一: 对于齐次线性方程组,

    1. 若 R(A)=n, 则只有零解
    2. 若 R(A)<n, 则无穷个解,其基础解系所含解向量个数为 n - R(A)
  • 齐次线性方程组——通解

    1. 化成行最简式
    2. x 3 = k 1 x_3 = k_1 x3=k1 , x 4 = k 2 x_4 = k_2 x4=k2
    3. 通解$ x = \begin{bmatrix} x_1 \ x_2 \ x_3 \ x_n \end{bmatrix} = k_1\begin{bmatrix}\end{bmatrix} + k_2\begin{bmatrix}\end{bmatrix} \ $ ( k 1 , k 2 ∈ R ) (k_1, k_2 \in R) (k1,k2R)
  • 定理二: R(A) = R( A ˉ \bar{A} Aˉ) ⇔ \Leftrightarrow 非齐次线性方程组有解

  • 非齐次线性方程组 A x = b x = b x=b (14)

    1. x = η 1 , x = η 2 x = \eta_1, x = \eta_2 x=η1,x=η2 都是 (14)的解,则 x = η 1 − η 2 x = \eta_1 - \eta_2 x=η1η2 为 (11)的解
    2. x = η x = \eta x=η 是(14)的解, x = ζ x = \zeta x=ζ 是(11)的解,则 x = η + ζ x = \eta + \zeta x=η+ζ 是(14)的解
    • R(A) = R( A ˉ \bar{A} Aˉ) < n 无穷个解
    • R(A) = R( A ˉ \bar{A} Aˉ) = n 唯一解
    • R(A) ≠ \neq = R( A ˉ \bar{A} Aˉ) 无解

相似矩阵及二次型

  • 定义1: 设 α = $ \begin{bmatrix} a_1 \ a_2 \ ··· \ a_n \end{bmatrix}$ ,β = $ \begin{bmatrix} b_1 \ b_2 \ ··· \ b_n \end{bmatrix} $ ,则 [α,β] 称为内积 , [α,β] = α T α^T αTβ

    1. 对称性 [α,β] = [β,α]
    2. 可加性 [α+λ,β] = [α,β] + [λ,β]
    3. 齐次性 [λα,β] = λ[α,β]
  • 定义2: 长度(范数 [ α , α ] \sqrt{[α,α]} [α,α] 记为 ∥ α ∥ \|α\| α

    1. ∥ α + β ∥ \|α+β\| α+β ≤ \leq ∥ α ∥ + ∥ β ∥ \|α\| + \|β\| α+β
    2. [α,β] ≤ \leq ∥ α ∥ ∥ β ∥ \|α\|\|β\| αβ
  • 定义3: 非零n维向量夹角<α, β> = arccos , [ α , β ] ∥ α + β ∥ ,\frac{[α,β]}{\|α+β\|} α+β[αβ] , 0 $\leq <α, β> \leq \pi $

  • 定义4: 一组非零向量两两正交,则称 正交向量组

    • 定理一: 正交向量组线性无关
    • 定理二: 若β与 α 1 α_1 α1, α 2 α_2 α2, ···, α r α_r αr 分别都正交,则β 与 其任意线性组合 k α 1 kα_1 kα1+ k α 2 kα_2 kα2+ ··· + k α r kα_r kαr 也正交
  • 定义5: 向量组 e 1 , e 2 , ⋅ ⋅ ⋅ , e r e_1, e_2, ···, e_r e1,e2,,er 为V的一个基,如果 e 1 , e 2 , ⋅ ⋅ ⋅ , e r e_1, e_2, ···, e_r e1,e2,,er 两两正交,则称其为正交基,如果 e 1 , e 2 , ⋅ ⋅ ⋅ , e r e_1, e_2, ···, e_r e1,e2,,er 两两正交且是单位向量,则称其为正交标准基

  • 已知V的一个基,求V的正交标准基

    β 1 = α 1 β_1 = α_1 β1=α1

    β 2 = α 2 − [ β 1 , α 1 ] [ β 1 , β 1 ] β 1 β_2 = α_2 - \frac{[β_1, α_1]}{[β_1, β_1]}β_1 β2=α2[β1,β1][β1,α1]β1

    β 3 = α 3 − [ β 1 , α 3 ] [ β 1 , β 1 ] β 1 − [ β 2 , α 3 ] [ β 2 , β 2 ] β 2 β_3 = α_3 - \frac{[β_1, α_3]}{[β_1, β_1]}β_1 - \frac{[β_2, α_3]}{[β_2, β_2]}β_2 β3=α3[β1,β1][β1,α3]β1[β2,β2][β2,α3]β2

    β i = α i − [ β 1 , α i ] [ β 1 , β 1 ] β 1 − [ β 2 , α i ] [ β 2 , β 2 ] β 2 − ⋅ ⋅ ⋅ − [ β i − 1 , α i ] [ β i − 1 , β i − 1 ] β i − 1 β_i = α_i - \frac{[β_1, α_i]}{[β_1, β_1]}β_1 - \frac{[β_2, α_i]}{[β_2, β_2]}β_2 - ··· - \frac{[β_{i-1}, α_i]}{[β_{i-1}, β_{i-1}]}β_{i-1} βi=αi[β1,β1][β1,αi]β1[β2,β2][β2,αi]β2[βi1,βi1][βi1,αi]βi1

  • 定义6: n阶方阵满足 A T A = E A^TA = E ATA=E 则称A为正交矩阵

    • A为正交矩阵 ⇔ \Leftrightarrow A T = A − 1 A^T = A^{-1} AT=A1
    • A为正交矩阵 ⇔ \Leftrightarrow 列向量都为单位向量且两两正交
    1. A为正交矩阵 ⇒ \Rightarrow |A|= $\pm$1
    2. A为正交矩阵 ⇒ \Rightarrow $A^T, A^{-1}, A^* $ 也是正交矩阵
    3. A为正交矩阵 ⇒ \Rightarrow A B AB AB也是正交矩阵
  • 定义7: 设P为正交矩阵,则Y = PX 称为正交变换

    1. 向量长度不变
    2. 内积不变
  • 定义8: 设A为n阶方阵,如存在数λ及非零向量 x x x 使得 A x = λ x Ax = λx Ax=λx , 则称 x x x 为A 对应于特征值λ的特征向量,可以写为 $(λE - A)x = 0 $ ,| λ E − A λE-A λEA| = 0 为特征方程

  • 求特征值和特征向量

    1. 由 | λ E − A λE-A λEA| = 0 求 λ
    2. 把 λ 带入 方程 ( λ E − A ) x = 0 (λE - A)x = 0 (λEA)x=0
    3. 求基础解系
    4. 求出对应特征值的全部特征向量
  • 定理三: 设λ 为矩阵A 的特征值,则 kλ 为 kA 的特征值, λ 2 λ^2 λ2 A 2 A^2 A2 的特征值

  • 定理四: λ 是A的特征值,则 f(λ) 是 f(A) 的特征值

  • 定理五:

    1. λ 1 + λ 2 + ⋅ ⋅ ⋅ + λ n = a 11 + a 22 + ⋅ ⋅ ⋅ + a n n λ_1 + λ_2 + ··· + λ_n = a_{11} + a_{22} + ··· + a_{nn} λ1+λ2++λn=a11+a22++ann
    2. λ 1 λ 2 ⋅ ⋅ ⋅ λ n = ∣ A ∣ λ_1λ_2···λ_n = |A| λ1λ2λn=A
  • 定理六七八 (P147): 将A对应不同特征值的特征向量合在一起仍线性无关

  • 定义9: 设A,B 是n阶矩阵,如存在可逆矩阵P使得 P − 1 P^{-1} P1AP = B 则称 A相似于B ,记为 A ~ B

  • 定理十: n阶方阵与对角矩阵相似 ⇔ \Leftrightarrow A有n个线性无关的特征向量

  • 相似变换矩阵P,对角矩阵 Λ \Lambda Λ

    P − 1 P^{-1} P1AP = Λ \Lambda Λ

    1. 求A 的所有特征值
    2. 求n个线性无关的特征向量
    3. P = ( p 1 , p 2 , ⋅ ⋅ ⋅ , p n p_1, p_2, ···, p_n p1,p2,,pn) ; Λ \Lambda Λ = [ λ 1 λ 2 ⋅ ⋅ ⋅ λ n ] \begin{bmatrix} λ_1 \\ & λ_2 \\ & & ··· \\ & & & λ_n \end{bmatrix} λ1λ2λn
  • 实对称矩阵

    • 性质2: 若A是实对称矩阵,则A的对应于不同特征值的特征向量必定正交
  • 定理十二: 对任何实对称矩阵,必存在正交矩阵P,使 P − 1 A P P^{-1}AP P1AP 为对角矩阵

  • 定义10: 设A,B都为n阶方阵,若存在可逆矩阵P使 P T A P = B P^TAP = B PTAP=B , 则称A与B相合

  • 定义11: n个变量 x 1 , x 2 , ⋅ ⋅ ⋅ , x n x_1, x_2, ···, x_n x1,x2,,xn 的二次齐次多项式 f ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + ⋅ ⋅ ⋅ + a 22 x 2 2 + ⋅ ⋅ ⋅ + a n n x n 2 f(x_1, x_2, ···, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ··· + a_{22}x_2^2 + ···+ a_{nn}x_n^2 f(x1,x2,,xn)=a11x12+2a12x1x2++a22x22++annxn2 称为二次型 = ∑ i , j = 1 n ( a i j x i x j ) ∑_{i,j=1}^n(a_{ij}x_ix_j) i,j=1n(aijxixj)

  • 定理十三: 设二次型 f = ∑ i , j = 1 n ( a i j x i x j ) f = ∑_{i,j=1}^n(a_{ij}x_ix_j) f=i,j=1n(aijxixj) , 则存在正交变换 x = Py,使 f f f 化为标准形 f = λ 1 y 1 2 + λ 2 y 2 2 + ⋅ ⋅ ⋅ + λ n y n 2 f = λ_1y_1^2 + λ_2y_2^2 + ··· + λ_ny_n^2 f=λ1y12+λ2y22++λnyn2 ,其中 λ 1 , λ 2 , ⋅ ⋅ ⋅ , λ n λ_1, λ_2, ··· , λ_n λ1,λ2,,λn f f f 的矩阵的特征值

  • 判断二次型的正定性

    定理十六: 实二次型 f = x T A x f = x^TAx f=xTAx 为正定 ⇔ \Leftrightarrow A的各阶顺序主子式都大于零

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值