格兰杰因果关系检验

本文探讨了格兰杰因果关系检验的前置条件——时间序列的平稳性,并介绍了使用单位根检验(ADF)确保序列平稳性的方法。进一步讨论了如何通过差分处理非平稳序列,构造VAR模型和进行协整检验,最终检验变量间的因果关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

进行格兰杰因果关系检验的一个前提条件是时间序列必须具有平稳性,否则可能会出现虚假回归问题
因此在进行格兰杰因果关系检验之前首先应对各指标时间序列的平稳性进行单位根检验(unit root test)。
常用增广的迪基—富勒检验(ADF检验)来分别对各指标序列的平稳性进行单位根检验。

实证检验步骤:
(1)先做单位根检验,看变量序列是否平稳序列,
若平稳,可构造回归模型等经典计量经济学模型;
若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

(2)若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。

缺陷:
格兰杰因果对时间的选取很敏感

【比如】:每年菜到了供应不足的季节,价格就会升高。但是由于大棚技术,任何时候都保持稳定价格,格兰杰因果关系检验则无法检测出供给与价格之间的因果关系。

Granger-Geweke 因果关系:
两个平稳的一维时间序列Xt和Yt,相对于只从序列Yt获得的信息,如果由Xt和Yt共同获得的信息可以提高对Yt的预测精度,那么就存在由Xt到Yt的Granger-Geweke 因果关系。Xt和Yt r 的p 阶自回归形式如下:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值