LeetCode - 875. Koko Eating Bananas

Koko loves to eat bananas. There are N piles of bananas, the i-th pile has piles[i] bananas. The guards have gone and will come back in H hours.

Koko can decide her bananas-per-hour eating speed of K. Each hour, she chooses some pile of bananas, and eats K bananas from that pile. If the pile has less than K bananas, she eats all of them instead, and won't eat any more bananas during this hour.

Koko likes to eat slowly, but still wants to finish eating all the bananas before the guards come back.

Return the minimum integer K such that she can eat all the bananas within H hours.

Example 1:
Input: piles = [3,6,7,11], H = 8
Output: 4

Example 2:
Input: piles = [30,11,23,4,20], H = 5
Output: 30

Example 3:
Input: piles = [30,11,23,4,20], H = 6
Output: 23

Note:
1 <= piles.length <= 10^4
piles.length <= H <= 10^9
1 <= piles[i] <= 10^9

题意:

Koko是一只喜欢吃香蕉的大猩猩。现在有N堆香蕉,第i堆有piles[i]个香蕉。管理员现在离开了,会在H(H >= piles.length)小时之后回来。Koko可以决定吃香蕉的速度,即每小时吃K个香蕉。每个小时它选择一堆香蕉,并吃掉其中的K个香蕉。如果某一堆里剩下的香蕉少于K个,它会吃完这一堆剩下的所有香蕉,但它这一小时内不会吃更多的其他堆的香蕉。

假设Koko喜欢慢慢地吃香蕉,但又想在管理员回来之前吃完所有香蕉。请问Koko每小时至少需要吃多少香蕉才能在管理员回来之前吃完呢?

例如,有4堆香蕉,每堆香蕉的数目为[3, 6, 7,11],如果管理员在8小时后回来,那么Koko每小时吃4个香蕉。

分析:

由于Koko在一个小时内把一堆香蕉吃完之后不会再去吃其他的香蕉,那么它一小时能吃掉的香蕉的数目不会超过最多的一堆香蕉的数目(记为M)。同时,它每小时最少会吃1个香蕉,所以最终Koko决定的吃香蕉的速度K应该是在1到M之间。

我们可以应用二分查找的思路,先选取1和M的平均数,(1+M)/2,看以这个速度Koko能否在H小时内吃掉所有香蕉。如果不能在H小时内吃掉所有的香蕉,那么它需要尝试更快的速度,也就是K应该在(1+M)/2到M之间,下一次我们尝试(1+M)/2和M的平均值。

如果Koko以(1+M)/2的速度能够在H小时内吃完所有的香蕉,那么我们来判断这是不是最慢的速度。可以尝试一下稍微慢一点的速度,(1+m)/2 - 1。如果Koko以这个速度不能在H小时之内吃完所有香蕉,那么(1+M)/2就是最慢的可以在H小时吃完香蕉的速度。如果以(1+m)/2 - 1的速度也能在H小时内吃完香蕉,那么接下来Koko尝试更慢的速度,1和(1+M)/2的平均值。

以此类推,我们按照二分查找的思路总能找到让Koko在H小时内吃完所有香蕉的最慢速度K。以下是这种思路的参考代码:

	public static int method(int[] piles, int H) {
		int min = 1;
		int max = 1;
		for (int pile: piles) {
			if (pile > max) {
				max = pile;
			}
		}
		while (min < max) {
			int mid = min + (max - min) / 2;
			int hours = getHours(piles, mid);
			if (hours <= H) {
				if (mid == min || getHours(piles, mid-1) > H) {
					return mid;
				}
				max = mid - 1;
			} else {
				min = mid + 1;
			}
		}
		return -1;   // 无解
	}
	
	/**
	 * 以speed的速度吃香蕉,吃完所有的香蕉需要多少小时
	 * @param piles
	 * @param speed
	 * @return
	 */
	public static int getHours(int[] piles, int speed) {
		int hours = 0;
		for (int pile : piles) {
			int hour = (pile + speed - 1) / speed;
			hours += hour;
		}
		return hours;
	}

时间空间复杂度:

在上述代码中,getHours需要扫描整个数组,每执行一次需要O(n)的时间。函数getHours执行的次数等于minEatingSpeed中while循环执行的次数。由于应用了二分查找算法,while循环执行的次数为O(logMAX),max为最多一堆香蕉的数目。因此总的时间复杂度是O(nlogMAX)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值