自然语言处理(Natural Language Processing, NLP)是计算机科学与人 工智能交叉领域中的一门关键技术,其目标是使计算机能够理解、解释、生成 人类语言。自然语言处理一直是人工智能最热门的应用研究领域,对科学技术、文化 教育、经济社会的发展各个方面都具有极其重大的意义。自然语言处理的研究 一直存在两类颇不相同而又相互补足的研究方法,即:规则方法与统计方法。 规则方法追求的是对自然语言的理解,但严重受到领域的限制;统计方法恰 好相反,它所追求的是领域无限,但语言理解能力却成为短板。近年以来,以 ChatGPT 为代表的生成式预训练对话人工智能技术(即大语言模型,简称大 模型)取得了令人瞩目的进展,给基于统计方法的自然语言处理技术带来了前 所未有的进步。
今天分享的是人工智能AI大模型行业研究报告:《自然语言处理:大模型理论与实践(预览版)》, 报告版权方/来源:西南财经大学&电子科技大学。
本报告共计:450页。完整版PDF电子版报告下载方式见文末。
研究报告内容摘要如下
神经概率语言模型
神经概率语言模型 (Neural Probabilistic Language Model) 由 Bengio 等 人[10]于 2003 年提出,是将深度神经网络应用于语言模型领域的早期工作之 一。该模型利用一个前馈神经网络来学习词语之间的条件概率关系,从而实现 文本生成和预测的能力。下面将介绍神经概率语言模型的概率约束条件、模型 架构及利用前馈神经网络构建神经概率语言模型的具体过程。
预训练语言模型
神经语言模型起初主要依赖于循环神经网络和长短时记忆网络,通过学习 语料库中的语言结构和概率分布来预测文本序列中的下一个单词。这些模型 基于最大化训练集上的似然概率进行训练,逐步提升了文本生成和语言理解 的能力。随着深度学习的快速发展,研究人员开始探索如何通过更广泛的文本 学习来提升语言模型的性能,因此,预训练语言模型(Pre-trained Language Models)应运而生。预训练语言模型通过在大规模未标记文本数据上进行自监 督学习,来预先训练通用的语言表示。它不再局限于简单的生成任务,而是通 过各种自监督任务(如掩码语言建模和下一句预测)学习到更丰富和普适的语 言理解能力。
整理分享报告原文节选如下:
《自然语言处理:大模型理论与实践(预览版)》完整版PDF电子版
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓