引
言
在人工智能快速发展的今天,AI大模型正逐渐成为各行各业数智化转型升级的核心动力。作为AI领域的探索者,璞华科技以“帮助客户实现数智化转型升级”为愿景,以强大的AI大模型开发与运营平台为基础,不断探索和验证AI大模型在实际业务应用中的可能性,推动企业的数智化转型升级,帮助企业重塑核心竞争力。
PART.1
AI大模型的发展趋势以及璞华科技的探索
AI大模型通常指通过海量数据训练、具有深度神经网络结构的人工智能模型。近年来,随着数据量的爆炸性增长和计算能力的提升,AI大模型取得了长足的发展:模型规模的持续扩大、多模态模型的崛起、模型的轻量化和高效化、自监督学习以及少样本学习、垂直行业AI大模型定制化、AI大模型开放平台与协同创新等。
正是在这一技术背景下,璞华科技凭借其多年的技术积累和创新能力,以人工智能研究院为中心,着力研究一般企业使用AI大模型的便捷途径,并成功推出重磅产品:英璞来(imprai),让AI大模型应用触手可及,让用户享受到“一体多用”、“开箱即用”、“按需定制”等商业价值。
英璞来(imprai)
PART.2
璞华科技的AI大模型开发与运营平台
英璞来着眼于为企业提供一个高度集成的开发与运营平台,并提供开箱即用的企业级智能助理,让企业轻松获得各种基于AI大模型的智能助理应用,并可根据业务按需搭建各种智能助理应用。
英璞来具有“一体多用”、“开箱即用”、“按需定制”这三大核心优势,从根本上为企业提供综合性的、全方位的AI大模型能力。
一体多用
英璞来提供AI大模型应用开发和运营的综合环境,实现AI应用开发、调试、发布、运维一站式服务。其核心设计理念就是All-in-One,通过同一个平台为企业全面赋能AI大模型能力。这不是对AI大模型能力的简单投送或者缝缝补补,而是从根本上为企业使用AI大模型奠定最基础的技术底座。
开箱即用
英璞来预置了各种AI原生应用,包括智能客服、会议预约、文档翻译、合同审计、简历筛选、知识库等各种企业和公共机构日常工作所需的应用,并且根据业务需要可以轻松创建和扩展。采用直观的线性可编辑界面,可以像搭积木一样轻松构建应用。无论是程序员还是非技术人员,都能快速上手。
按需定制
英璞来支持市面上的各种大语言模型,并提供了丰富的API接口,可以轻松调用这些模型进行各种任务,如文本生成、图片生成、流程搭建等。支持与其他业务系统集成,实现更广泛的业务应用场景。英璞来可以根据业务需求选择组件和流程,对个性化需求实现定制。
英璞来(imprai)
PART.3
AI大模型在通用场景中的应用
英璞来从设计之初,就考虑到AI大模型的开发、部署、使用模式,特别注重应用全流程一体化、可扩展的工具集、模型数据能力增强、各种大模型的接入支持、企业级应用开发以及运维便利性、私有化部署模式等诸多方面的机制。
正是基于上面的设计理念,作为AI应用开发与运营平台,英璞来就像是一只处于下蛋阶段的“母鸡”,已经拥有可以开箱即用的智能助理工具集,比如智能客服、会议预约、文档翻译、合同审计、简历筛选、知识库等各种各样的通用场景工具;更重要的是,英璞来拥有持续“下蛋”的能力,可以根据业务需求轻松搭建自己的AI原生应用。
比如智能客服应用,以前的智能客服需要在系统后台设置各种各样的关键词,在多轮对话场景中事先设计对话的演进路线,根据对话的内容条件给出回答,但实际效果存在很多问题:上下文的理解不准确,条件判断过于僵化,回答的内容答非所问……现在使用英璞来,这些问题迎刃而解,不仅节省了原有系统需要的大量的系统设置时间,也让对话更加流畅和精准。
英璞来(imprai)
PART.4
AI大模型在特定行业中的应用
AI大模型在特定行业的应用是AI大模型的主要价值之一,因为它能够针对不同行业的需求,提供高度定制化和智能化的解决方案。这里以英璞来为例,介绍AI大模型在制造、教育、金融等领域的应用场景及其带来的价值。
制造行业:化工配方推荐
璞华科技将AI大模型应用到智能制造的产品研发领域,极大地强化了其产品生命周期管理平台:璞华易研PLM。璞华易研PLM在化工材料、日化、香精香料、食品等行业不断得到普及。比如在化工材料行业,璞华易研PLM贯穿新材料的市场需求、设计、实验、中试/小批量、放量、优化、运营等环节,覆盖配方、成本、实验、资源、模版、规范、物料、报表、需求、流程、模型、权限等方面的管理,在配方管理、工艺管理、实验管理、项目管理、成本管理、知识管理、合规管理、权限管理等方面拥有丰富而灵活的管理功能。英璞来从大量的实验数据和历史配方中快速找到最优的材料组合和工艺参数,帮助化工材料企业优化产品性能、缩短研发周期并提高生产效率。
材料配方优化:通过分析已有的化工材料配方和实验数据,推荐出最佳的材料组合,以实现特定的产品性能。传统的配方设计通常依赖于专家的经验和反复的实验,周期长、成本高。而AI大模型能够从海量数据中学习到材料之间的复杂关系,并快速推荐出满足特定要求的材料组合,显著提升研发效率。
新材料与配方发现:通过对海量化学数据和文献的学习,帮助研究人员发现新的材料组合和化学配方,推动化工行业的创新。传统的新材料研发往往需要大量的试验和筛选过程,而AI可以根据现有的数据模型,快速预测出可能具有创新性的新材料或配方,大大缩短研发时间。
个性化配方定制:根据客户需求,为特定的应用场景和条件推荐定制化的配方。不同的行业、地区或工况对化工产品的要求各不相同,AI通过分析客户需求和环境因素,能够推荐出针对性的配方方案,满足定制化生产的需求。
教育行业:作文自动批阅
璞华科技将AI大模型应用到初高中教学领域,推出了璞公英教育平台中英文作文自动批阅系统。应用大模型对作业、考试场景下中英文作文作答文本或扫描后作答图片智能评阅,只需15秒即可完成一篇作文分值评定、综合点评、改进建议、文章错误、优美表达输出。将教师从中英文作文分值评定、综合点评中彻底释放,助力学生语言运用核心素养,减轻家长课后辅导负担。
语法与拼写纠正:自动检测作文中的语法错误、拼写错误及标点符号的使用不当等问题。通过对大规模中英文文本数据的学习,AI可以精准识别常见的语法和拼写错误,并给出详细的纠正建议。
文章结构与逻辑分析:不仅能处理局部的语法问题,还能从整体上分析作文的结构和逻辑性。它可以评估文章的段落结构是否清晰、论点是否有力、逻辑链是否完整,以及过渡句是否合理等。
评分标准与自动反馈:根据预设的评分标准(如词汇、语法、结构、内容、逻辑等)自动给出作文的整体评分,并针对不同维度提供详细的反馈建议,一篇文章在15秒内可以完成整个评阅过程。这种即时反馈系统可以帮助学生在短时间内获得全面的作文评阅结果,并明确改进方向。
金融行业:风控合规检查
璞华科技在数字金融领域主要有股权投资管理系列产品“璞华易投”、债权融资管理系列产品“璞华易贷”等品牌。璞华科技通过AI大模型对项目计划书、财务报告文件、投后报告、市场数据等各类数据进行信息提取和分析,在信用风险评估、反欺诈检测、合规与监管风险预警等场景中成效显著。
信用风险评估:AI大模型在信用风险评估方面,能够通过分析借款人或企业的大量历史数据,提供精确的信用评分。传统的信用评估依赖于有限的财务指标和个人信用报告,而AI能够综合更多维度的数据,例如社交行为、交易历史、职业信息等,形成全面的信用画像。
反欺诈检测:AI大模型在反欺诈领域尤为重要。通过实时分析交易行为、账户活动、设备指纹等多维度的数据,AI可以快速识别出异常的交易模式,并发出风险警报。传统的反欺诈系统往往基于固定规则,难以应对复杂的欺诈行为,而AI可以通过自我学习不断优化识别模式,应对不断变化的欺诈手段。
合规与监管风险预警:金融行业面临严格的合规要求,违规操作可能带来巨额罚款和声誉损失。AI大模型通过自然语言处理技术,能够实时监控和分析法律法规、监管指引以及内部合规流程,确保金融机构在复杂的法规环境中及时调整运营策略。
英璞来(imprai)
PART.5
璞华科技的AI大模型应用最佳实践
璞华科技在AI大模型的诸多应用实践中,逐渐总结出成功的关键因素,在璞华科技称之为NTI实践模式。
精准把握客户的业务需求
首先是精准把握客户的业务需求(Needs)。客户的业务需求始终是璞华科技工作的起点。AI大模型为客户赋能实际上就是帮助客户解决业务问题的过程,是针对业务问题提供和落地解决方案的过程,是切切实实为客户创造价值的过程。在AI大模型开发与应用的过程中,精准地把握客户的业务需求,并在实施目标上与客户达成共识,这是AI大模型应用成功地关键。璞华科技基于自身的需求分析机制,通过与客户密切沟通,理解客户的业务痛点和需求,确保开发的应用能够真正解决客户问题。
具体实施中大胆试错
其次是在具体实施中大胆试错(Trial and error)。AI大模型作为技术创新引擎,必然会给各行各业带来深刻的改变。虽然发展迅猛,但是在应用方面还处于摸索和尝试阶段,需要大胆试错。搭建起英璞来这样的开发与运营平台之后,AI大模型应用就不再复杂和繁琐,可以轻松地在业务中用起来。实践证明,AI大模型给业务带来的价值不仅仅是“降本增效”,更是业务流程的高效化,以及业务方式的变革,进而驱动业务设计的创新。
持续反馈与优化机制
第三是持续反馈与优化机制(Improvement)。就像英璞来的英文名称imprai,是持续改进的AI(Improvable AI),是不断迭代升级的AI。在应用部署后,需要建立持续的监控机制,根据用户反馈不断优化产品功能,提升用户体验。正因为英璞来这样的AI大模型开发与运营平台具有“一体多用”“按需定制”的优势,业务应用可以形成一个正向闭环,在同一个平台上实现应用的开发、调试、发布、运维、改进,实现应用的全生命周期管理。不管是共通应用、还是行业应用,抑或定制应用,都可以通过持续的使用反馈总结用户体验,评估业务绩效,并以此实施持续的改进,最终带来业务的发展。
英璞来(imprai)
结
论
AI大模型在各行各业的应用初见成效。结合AI大模型的技术发展潮流,璞华科技将持续投入资源推动英璞来的迭代升级,继续强化英璞来“一体多用”、“开箱即用”、“按需定制”的特性,帮助用户充分释放AI大模型的潜能,增进业务竞争力,以在人工智能时代立于不败之地。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈