【3k star!】最新开源ASR模型Moonshine性能超过whisper: 速度更快、准确率更高!实测一把,感觉。。。

前言

今天给大家分享最新开源的一款ASR模型Moonshine, 据官方介绍,比whisper同等级规模的参数版本识别速度更快,准确率更高! 本文将准备多个案例进行实测ASR效果,仅供参考。下面进入今天的主题~

本文目录

  • moonshine模型介绍

  • moonshine性能介绍

  • 实战篇:下载moonshine模型权重&&步骤代码进行语音识别

  • 使用 onnxruntime 包来运行 Moonshine 模型,不依赖torch

  • 使用huggingface框架加载moonshine模型进行asr语音识别

  • 效果篇: moonshine-base模型 VS whisper-base模型ASR效果对比

  • 案例1: 短文本语音识别-2种模型效果展示

  • 案例2: TED演讲视频-2种模型效果展示

moonshine模型介绍

Moonshine 是由 Useful Sensors公司推出开源的语音到文本(speech-to-text, STT)转换模型,旨在为资源受限设备提供快速而准确的自动语音识别(ASR)服务。Moonshine 基于先进的编码器-解码器架构,采用了Transformer模型。其编码器部分负责处理输入的语音信号,而解码器部分则生成文本输出。目前在gitihub社区点赞量达2k!Moonshine模型具有以下特点:

  1. 开源tiny版本,参数量:27 M, 只支持英文语言; 开源base版本,参数量:61 M, 只支持英文语言;

  2. 更快的处理速度,Moonshine 的处理速度比 Whisper 快 1.7 倍。对于 10 秒的短音频片段,处理速度可达 Whisper 的五倍。

  3. 基于20w小时的语音样本训练而来。

moonshine性能介绍

Moonshine 在多个维度上超越了现有的语音识别解决方案,特别是在处理速度和准确度方面。据官方报告,Moonshine 的处理速度「比 OpenAI 的 Whisper 快五倍」,并且在词错误率方面也表现得更好,如下图所示。这种显著的优势使得 Moonshine 成为资源受限环境下语音识别的理想选择。

下面我将给大家实操部署moonshine-base模型和whisper-base模型,准备几个案例来实际展示具体的语音识别效果,仅供参考~

实战篇:下载moonshine模型权重&&步骤代码进行语音识别

使用 onnxruntime 包来运行 Moonshine 模型,不依赖torch
from IPython.display import clear_output   !pip install moonshine   !git clone https://github.com/usefulsensors/moonshine.git   !pip install silero_vad onnxruntime  sounddevice tokenizers einops   !pip install onnxruntime-gpu   

下载模型权重
!huggingface-cli download UsefulSensors/moonshine  --local-dir . --local-dir-use-symlinks False   clear_output()   

加载moonshine模型onnx格式权重进行推理
model = MoonshineOnnxModel(models_dir= "./onnx/base")   def moonshine_infer(wav_file):       with wave.open(wav_file) as f:           params = f.getparams()           assert (               params.nchannels == 1               and params.framerate == 16_000               and params.sampwidth == 2           ), f"wave file should have 1 channel, 16KHz, and int16"           audio = f.readframes(params.nframes)       audio = np.frombuffer(audio, np.int16) / 32768.0       audio = audio.astype(np.float32)[None, ...]       tokens = model.generate(audio)       tokenizer = tokenizers.Tokenizer.from_file("./moonshine/assets/tokenizer.json")       text = tokenizer.decode_batch(tokens)       return text   

进行模型推理

使用huggingface框架加载moonshine模型进行asr语音识别
%%time    %cd /kaggle/working/moonshine   from IPython.display import clear_output   from transformers import AutoModelForSpeechSeq2Seq, AutoConfig, PreTrainedTokenizerFast   import torchaudio   import torch   import sys   device = "cuda:0" if torch.cuda.is_available() else "cpu"   # 'usefulsensors/moonshine-base' for the base model   moonshine = AutoModelForSpeechSeq2Seq.from_pretrained('usefulsensors/moonshine-base', trust_remote_code=True)   tokenizer = PreTrainedTokenizerFast.from_pretrained('usefulsensors/moonshine-base')   audio, sr = torchaudio.load("moonshine/assets/beckett.wav")   if sr != 16000:       audio = torchaudio.functional.resample(audio, sr, 16000)   tokens = moonshine(audio)   print(tokenizer.decode(tokens[0], skip_special_tokens=True))   

下面我将利用moonshine-base版本和whisper-base版本的模型进行语音识别效果对比,看具体实际案例情况下,模型的具体表现情况,随便找的素材,经供参考~

效果篇: moonshine-base模型 VS whisper-base模型ASR效果对比

案例1: 短文本语音识别-2种模型效果展示

参考音频1效果展示:

moonshine-base的ASR效果展示

识别结果: Ever tried ever failed, no matter try again fail again fail better.

whisper-base的ASR效果展示

2种模型识别结果都非常正确,而moonshine-base速度很快,只用来不到0.6秒,即便算上模型加载的时间,也才1.2秒。

案例2: TED演讲视频-2种模型效果展示

随便找一份英语的演讲视频进行测试,我这个找到https://www.youtube.com/playlist?list=PLosaC3gb0kGDUYoRq-VioWOZ5Ke0UIoSE,截取前2分钟的视频转化为音频效果如下:

moonshine-base的ASR效果展示

单次不支持长语音识别,采用分段识别,代码如下:

import librosa   import os   import moonshine   import soundfile as sf   # !mkdir temp   def benchmark(audio_pth):       # 读取音频文件       audio, sr = torchaudio.load("english.wav")       if sr != 16000:           audio = torchaudio.functional.resample(audio, sr, 16000)       # 分割音频文件成小段       chunk_duration = 10  # 每个片段的长度(秒)       chunk_size = int(chunk_duration * sr)       chunks = [audio[0:1,i:i + chunk_size] for i in range(0, audio.shape[1], chunk_size)]          # 转录音频       transcription = ""       for i, chunk in enumerate(chunks):           print(f"正在转录... ({i + 1}/{len(chunks)})")           tokens = moonshine_model(chunk)           chunk_transcription = tokenizer.decode(tokens[0], skip_special_tokens=True)              if isinstance(chunk_transcription, list):               chunk_transcription = ' '.join(chunk_transcription)              transcription += chunk_transcription       return transcription   

最后识别的结果如下:

whisper-base的ASR效果展示

我感觉2个模型识别的效果相差不大,moonshine速度是比较快的,但是目前moonshine只支持英文。大家可以对比录音听听,看看谁识别的更准~

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值