阿里发布推理模型QwQ-32B-Preview,性能超OpenAI o1-preview

今天,阿里巴巴的 Qwen 团队发布了其最新的推理模型 QwQ-32B-Preview。该模型拥有 325 亿参数,并能处理约 32,000 个 Token 的提示词。值得注意的是,它是首个可以在宽松许可下下载使用的模型。

试用链接:https://huggingface.co/spaces/Qwen/QwQ-32B-preview

根据官网介绍,QwQ-32B-Preview 是为数不多的可以与 OpenAI 的 o1 相媲美的模型之一。比如,在 AIME 和 MATH-500 测试中,QwQ-32B-Preview 的表现要好于 OpenAI 迄今为止发布的两个推理模型 o1-preview 与 o1-mini。AIME 涵盖算术、代数、计数、几何、数论、概率等中学数学主题的综合评测,旨在测试数学问题解决能力,而 MATH 是一个专门设计来评估 LLM 在数学问题解决能力上的测试集。

官方博客给出的这个例子能很好表现 QwQ 深度自省的能力 —— 质疑自身假设、进行深思熟虑的自我对话,并仔细审视其推理过程的每一步。

QwQ-32B-Preview 能够有效地进行自我核查,这么做可以帮助它们避免一些通常困扰模型的常见陷阱,但也会导致它们通常需要更长时间才能得出解决方案。

当然 QwQ-32B-Preview 还有其他局限性,比如:

  • 模型可能在回答中混合使用不同语言,影响表达的连贯性

  • 在处理复杂逻辑问题时,模型偶尔会陷入递归推理模式,在相似思路中循环,但可能导致冗长而不够聚焦的回答

  • 与其他大模型一样,它可能产生不恰当或存在偏见的回答

  • QwQ-32B-Preview 虽然在数学和编程领域表现出色,但在其他方面仍有不足

我试用了一次,确实出现了混合使用不同语言问题,并且我的问题设置了两个干扰条件,导致给出的回答略显冗长。

QwQ-32B-Preview 在 Apache 2.0 许可证下 “公开” 可用,这意味着它可以被用于商业应用。但是目前该模型仅发布了部分组件,因此无法完全复制 QwQ-32B-Preview 或深入了解系统的内部工作原理。AI 模型的 “开放性” 问题尚未有定论,但普遍存在从较封闭(仅提供 API 访问)到较开放(公开模型、权重、数据)之间的渐进式区分,QwQ-32B-Preview 处于两者之间。

现在正值 Scaling Laws 这一之前曾为大规模模型的开发指明了方向的法则被质疑时期,最近的多篇报道表明,包括 OpenAI、谷歌和 Anthropic 在内的主要人工智能实验室,模型的进展已不像过去那样快。

这促进了对新型人工智能方法、架构和开发技术的探索,其中之一就是测试时计算(test-time compute)。测试时计算,也被称为推理计算,实质上是给模型额外的处理时间以完成任务,这应该是 o1 或者 QwQ-32B-Preview 这样的模型的核心技术之一。

除了 OpenAI 和阿里巴巴外,其他很多大模型实验室也认为测试时计算是未来趋势,例如谷歌,他们已经将专注于推理模型的内部团队扩展至大约 200 人,并为此投入了大量的计算资源。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### 关于 QwQ-Preview 的 Token 数量限制 QwQ-Preview 是基于 QwQ-32B 技术的一个轻量化版本模型,其设计目标是在保持高性能的同时降低资源消耗。尽管具体文档未提及 QwQ-Preview 的上下文长度限制,但从技术继承的角度来看,可以推测 QwQ-Preview 应该沿用了完整的上下文支持能力[^1]。 对于任何 Transformer 类型的语言模型而言,Token 数量的处理能力和模型架构密切相关。通常情况下,Transformer 模型的最大上下文长度由以下几个因素决定: 1. **内存占用**:随着输入序列的增长,自注意力机制中的计算复杂度会迅速增加至 \(O(n^2)\),其中 \(n\) 表示 Token 长度。因此,较大的上下文长度需要更多的 GPU/TPU 内存来存储中间状态。 2. **RoPE 编码方式**:由于采用了旋转位置编码 (Rotary Positional Embedding, RoPE),理论上能够有效扩展到极长的上下文长度而不会显著影响性能。 针对 QwQ-32B 及其衍生版 QwQ-Preview,已知最大支持的上下文长度可达 131,072 Tokens。然而,在实际应用中,这一极限可能受到硬件条件约束以及推理效率需求的影响。例如,如果单次请求过一定规模,则可能会被截断或者分批处理以优化延迟表现。 至于如何计算 Token 数量,这取决于具体的分词器实现细节。一般流程如下所示: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path_to_qwq_preview_model") text = "这是一个测试字符串用于演示如何统计Tokens." tokens = tokenizer.tokenize(text) print(f"总Token数: {len(tokens)}") ``` 上述代码片段展示了通过 HuggingFace 提供的标准接口加载指定模型对应的分词工具,并利用 `tokenize` 方法将原始文本拆解成离散单元的过程。最终输出即代表给定句子映射后的 Token 总计数目。 #### 注意事项 需要注意的是,不同语言之间字符转译为固定大小向量时所遵循规则有所差异,中文环境下的字典构建往往更加精细复杂一些;另外特殊符号、空白符也可能计入整体统计范围之内。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值