0****1
Vibe Coding 的定义
最近这段时间,**氛围编程(Vibe Coding)**真的是火爆了。
这个概念是由 AI 大神 Andrej Karpathy 于今年 2 月初在社交平台上提出的,并迅速成为一种新兴的编码方式。
Vibe Coding 是一种依赖人工智能的计算机编程实践,其核心在于开发者使用自然语言提示向针对代码优化的大型语言模型(LLM)描述问题,由 LLM 生成软件,从而使程序员摆脱编写和调试底层代码的需要。
Vibe Coding 的本质是"完全沉浸于"AI 助手的"氛围"中,将详细的实现过程外包给 AI。
这不算真正的编程 – 我只是看看东西,说说东西,运行东西,然后复制粘贴东西,而且它大多都能工作。
— Andrej Karpathy
图:Andrej Karpathy 关于“氛围编程”的定义(来源:X)
从起源和发展来看,Vibe Coding 伴随着强大的、经过代码生成优化的 AI 模型的兴起而出现。一些分析师认为,Vibe Coding 只是低代码平台的下一步发展,在这种模式下,自然语言成为了编程语言。
02
Vibe Coding 与传统编码的比较
传统编程要求开发者掌握语法规则、函数库和底层架构,通过手动编写代码构建软件。编程的本质是与计算机对话,而这种对话必须遵循严格的语法和结构。任何微小的错误——哪怕是一个分号或括号的缺失——都可能导致程序崩溃。而**“氛围编程”**打破了这一框架。
03
Vibe Coding 的优势 & 局限性
0****1
Vibe Coding 的优势
\1. Vibe Coding 通过多种机制显著提高了开发者的工作效率。
\2. Vibe Coding 有利于快速原型设计和迭代。通过简单的自然语言指令,开发者可以快速尝试新的想法并获得初步的演示版本,从而加速反馈循环。
\3. Vibe Coding 还降低了软件开发的门槛,使那些编程经验有限甚至没有编程经验的人也能够创建软件。领域专家可以直接使用自然语言描述他们的需求,而无需先将其转化为代码。
\4. Vibe Coding 还能自动化繁琐的任务,将重复性的编码工作和调试工作交给 AI 处理,从而解放开发者的精力。
在以下场景中,Vibe Coding 的优势尤为突出:快速原型设计、创建小众和个性化应用、自动化简单任务、促进更广泛的开发参与、加速产品迭代周期以及在需求明确的情况下。
0****2
Vibe Coding 的局限性
尽管 Vibe Coding 带来了诸多便利,但也存在一些不容忽视的局限性。
\1. 在调试方面,AI 工具并非总能解决错误,有时需要开发者进行实验性调整。
\2. 在代码质量方面,AI 生成的代码可能并非总是针对性能进行优化,也可能不符合最佳实践。
\3. 从长期维护的角度来看,对 AI 生成代码缺乏深入理解会使得未来的维护和修改变得困难。过度依赖 AI 可能会导致开发者失去基本的编程技能。
Vibe Coding 虽然提供了速度和便利性,但同时也带来了与代码质量、可维护性以及开发者基本技能可能退化相关的重大风险。
图:引发“氛围调试”(Vibe Debugging)这一半开玩笑的概念:“20 分钟创建 2 万行代码,2 年时间来调试”。虽带有调侃性质,但确实点出了核心问题:当代码超出开发者理解范围时,调试几乎成为不可能的任务。
04
如何“氛围编程”?
以 Karpathy 的 iOS 应用开发为例,他的工作流程相当简单:明确需求,寻求 AI 帮助,跟随 AI 提供的设置和代码实现功能,然后不断迭代改进。
图:Karpathy 的开发过程中的几次提示
总结一下“氛围编程”的几个关键步骤:
1.**明确项目目标和需求。**即使在“氛围编程”中,你也需要知道你想要构建什么,尽管细节可以在过程中逐步明确。
2.**选择合适的 AI 工具。**目前市场上有多种选择,包括 Cursor Composer、GitHub Copilot、Replit Agent 等。
3.**通过自然语言描述你想要实现的功能。**与传统编程不同,你不需要知道如何用代码实现这些功能,只需清晰地表达你的意图。
4.**运行 AI 生成的代码。**虽然“氛围编程”强调“忘记代码的存在”,但在实践中,至少也需要基本了解不同的代码究竟在做什么,尤其是在调试阶段。
5.**通过反馈循环不断迭代。**当遇到问题时,将错误信息提供给 AI,让 AI 提出解决方案,然后测试和改进。
为了有效地应用 Vibe Coding,需要采取一些关键策略。
- 首先,需要进行清晰而具体的提示,向 AI 提供详细且明确的指令。
- 其次,要进行迭代式的完善,通过不断地提示、审查和提供反馈来引导 AI。
- 模块化设计有助于提高代码的可维护性,将项目分解为更小的、易于管理的组件。采用测试驱动开发的方法,编写测试来验证 AI 生成代码的功能和正确性。
05
支持 Vibe Coding 的工具与平台
随着「氛围编程」的兴起,市面上出现了多款 AI 编程助手和集成开发环境,帮助开发者更方便地实践 Vibe Coding 思路。
支持 Vibe Coding 的工具与平台:
目前有一些工具非常适合 Vibe Coding。
- Cursor是一款以 AI 为核心的集成开发环境,专为会话式编码而设计,提供自然语言输入、上下文分析、代码生成、自动调试和增强的文档查找等功能。
- Replit是一个在线编码平台,集成了 AI 功能,如 Ghostwriter,可以通过自然语言提示生成、解释和部署代码。
- GitHub Copilot是一款 AI 代码助手,作为代码编辑器的扩展工作,提供代码自动完成和自然语言编码问答的聊天模式。
- ChatGPT 和 Claude等大型语言模型聊天机器人也可以用于 Vibe Coding,尽管它们并非专门的编码 IDE。
- 其他工具如Roo Code/Cline 和 Aider也为使用免费的 AI 模型进行 Vibe Coding 提供了可能性。
- Lovable平台则致力于提高 AI 生成代码的可靠性和生产可用性。
06
Vibe Coding 对开发者技能要求的改变
Vibe Coding 的出现对开发者的技能要求产生了显著的影响,并正在改变传统的软件开发方法。
1.**开发者需要更加注重问题定义和规范,清晰地使用自然语言表达需求和期望的结果。**确定最佳的提问方式变得至关重要。
2.**开发者需要具备指导和审查 AI 生成代码的能力,评估、完善和测试 AI 产出的代码。**开发者更像是扮演指导者或编辑的角色。
3.**开发者需要学习如何有效地与 AI 沟通,掌握提示技巧以获得期望的结果。**虽然侧重点有所变化,但对编程基本原理的理解对于有效地指导 AI 和进行调试仍然很有价值。
对于开发者来说,Vibe Coding 不会完全取代传统编程技能,而是形成互补。
我们可能会看到一种新的平衡,其中开发者专注于高层次的系统设计、架构决策和业务逻辑,而将更多的实现细节委托给 AI。
这种协作模式将重新定义什么是"编程技能",从纯粹的代码编写转向有效指导和管理 AI 工具的能力。
07
Vibe Coding 改变未来的软件开发
未来,我们可能会看到以下几个发展趋势:
\1. 首先,AI 辅助开发工具将变得更加专业化和垂直化。 不同行业和技术栈可能出现专门的 Vibe Coding 解决方案,更好地满足特定领域的需求。例如,针对前端开发、数据科学或企业应用的专用 AI 编程助手,它们能够理解行业术语和最佳实践。
\2. 其次,AI 与传统开发工具的集成将更加深入和无缝。 未来的 IDE 可能会将 AI 功能作为核心组件而非外部插件,提供更加一体化的开发体验。代码生成、审查、测试和部署的整个流程都可能被 AI 增强。
\3. 第三,我们可能会看到更精细的人机协作模式出现。 开发者将能更好地控制 AI 输出的细节,例如通过更丰富的提示词工程或可视化工具来指导 AI 生成符合特定架构和设计模式的代码。AI 也可能变得更善于理解和遵循项目的上下文和规范。
总之,Vibe Coding 不仅仅是编码方式的革新,更是软件开发角色与团队协作模式的重新定义。从快速原型到商业级应用,AI 的协作潜力还远未被完全挖掘。对开发者而言,善用自然语言提示、建立完善的审查流程、持续提升系统设计与批判思维能力,才是拥抱这场变革的关键。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈