手把手教你用macOS + Ollama + Enchanted,本地部署最新 Llama3,保姆级教程!

4月19日,Meta开源了大模型Llama3,并在多项指标上超越了现有最先进的大模型。Ollama社区也同步新增 Llama3 的支持。接下来,我们将在MacBook Pro上部署Llama3,让大家在本地体验最强开源大模型。

Screenshot 2024-04-20 at 12.06.19.png

硬件设置,MacBook Pro (2019款),Intel CPU,8 Core,16GB内存。

具体步骤:

  • 安装Ollama
  • 下载Llama3
  • 安装Enchanted

安装Ollama

Ollama大家都比较熟悉了,安装非常方便,有macOS独立安装包。下载,解压,安装。

下载链接:https://ollama.com/download

Screenshot 2024-04-20 at 13.49.54.png

安装完成后,会提示命令行:ollama run llama2,可以拷贝一下。但是注意要下载llama3,而不是llama2.

下载Llama3

进入 Terminal,执行(把llama2改为llama3):ollama run llama3。下载需要等待一段时间,具体取决于网络速度。

Terminal
复制代码
$ ollama run llama3
pulling manifest 
pulling 00e1317cbf74... 100% ▕██████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB                         
pulling 4fa551d4f938... 100% ▕██████████████████████████████████████████████████████████████████████████████████████▏  12 KB                         
pulling 8ab4849b038c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████▏  254 B                         
pulling c0aac7c7f00d... 100% ▕██████████████████████████████████████████████████████████████████████████████████████▏  128 B                         
pulling db46ef36ef0b... 100% ▕██████████████████████████████████████████████████████████████████████████████████████▏  483 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 
>>>

下载完成后,直接进入llama3状态,提示本文:Send a message (/? for help)。可以自行提问并获得回复。

Terminal
复制代码
>>> who are you
I am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner. I'm not a human, but a computer program designed to simulate conversation and answer questions to the best of my ability based on my training data. 

I was trained using a massive dataset of text from various sources, including books, articles, and websites. This training enables me to understand and respond to natural language input, such as your question about who I am!

In simple terms, I'm like a very smart chatbot that can have a conversation with you!

>>> 

macOS 状态栏上有图标提示llama3在后台运行。

Screenshot 2024-04-20 at 14.22.49.png

安装Enchanted

Enchanted 是开源并兼容 Ollama 的应用程序,允许您在iOS生态系统(macOS、iOS、Watch、Vision Pro)中的所有设备上获得未经过滤、安全、私密和多模态的体验。

下载链接:https://github.com/AugustDev/enchanted

页面点击:Download on the App Store 图标,进入macOS的 App Store 下载安装。

68747470733a2f2f692e6962622e636f2f3757587433715a2f646f776e6c6f61642e706e67.png

安装完成后,启动界面非常简洁大气:

Screenshot 2024-04-20 at 14.17.47.png

之前llama3已经在后台运行了,所以可以直接在Enchanted里提问并获得回答。

Screenshot 2024-04-20 at 14.20.37.png

讨论

这个解决方案可以让我们在个人笔记本电脑上完美体验llama3,无需科学上网即可轻松使用最强的开源大模型。而且,在其他平台(Windows和Linux)上也应该可以轻松部署,具体的步骤可以参考各应用的官方网站,或者查找其他的介绍文章。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
<think>嗯,用户想知道如何在本地部署Dify、Ollama和DeepSeek的服务。首先,我需要回顾一下之前提供的引用内容。引用[1]提到了从GitHub拉取RAGFlow的源码,但用户的问题是关于Dify、Ollama和DeepSeek的,所以可能需要重点看引用[2]和[3]。引用[2]提到了安装DockerDesk,安装Ollama和DeepSeek模型,然后安装Dify,而不是OpenWebUI。引用[3]则讨论了Dify在Docker部署时遇到的安装界面卡住问题,建议使用自动化脚本的方法,以及配置LLM和系统推理模型的步骤。 用户的需求应该是想一步步的本地部署教程,包括安装这些组件的顺序、配置方法,可能遇到的问题如何解决。需要先安装Ollama,然后下载DeepSeek模型,接着安装Docker,再部署Dify。过程中可能会遇到Dify安装时的502错误,这时候需要参考引用[3]提到的使用自动化脚本的方法。另外,配置Dify时要连接到Ollama和DeepSeek模型,可能需要修改配置文件或者通过Dify的界面设置。 接下来要组织步骤,确保逻辑清晰。首先安装Ollama,下载模型,然后安装Docker,再部署Dify。注意在部署Dify时可能遇到的问题,比如卡在安装界面,这时候需要使用自动化脚本。最后配置Dify的模型设置,确保能调用本地部署的DeepSeek模型。 需要检查每个步骤的命令是否正确,比如Ollama的安装命令,Docker的安装步骤,以及Dify的Docker Compose配置。同时,提醒用户注意端口冲突,模型下载的版本,以及如何验证服务是否正常运行。可能还需要提到如何访问Dify的Web界面,进行后续的配置。 另外,用户可能关心这些组件之间的协作关系,比如Dify如何通过Ollama来调用DeepSeek模型,所以需要解释清楚各部分的作用。比如Ollama作为本地的大模型服务,Dify作为应用开发框架,通过接口连接到Ollama。DeepSeek模型则是具体的模型文件,需要正确下载并加载到Ollama中。 最后,生成相关问题时要围绕部署过程中可能遇到的更多问题,优化方法,以及应用场景。比如如何解决端口冲突,如何优化模型性能,或者这些工具组合起来可以做什么样的应用。</think>### Dify+Ollama+DeepSeek本地部署教程 #### 一、环境准备 1. **操作系统要求**:Linux/Windows/macOS(推荐Ubuntu 22.04 LTS) 2. **硬件配置**:建议16GB内存+8核CPU+NVIDIA GPU(非必须,但提升模型推理速度) 3. **依赖工具安装**: - Docker Desktop(社区版即可) - Git版本控制工具 - Python 3.9+环境 #### 二、分步部署流程 **(一) 部署Ollama服务** ```bash # 1. 下载Ollama curl -fsSL https://ollama.com/install.sh | sh # 2. 启动服务 ollama serve # 3. 下载DeepSeek模型(以7B版本为例) ollama pull deepseek-ai/deepseek-7b[^2] ``` **(二) 部署Dify** ```bash # 1. 克隆仓库(注意替换分支版本) git clone -b v0.3.3 https://github.com/langgenius/dify.git # 2. 进入docker目录 cd dify/docker # 3. 启动容器(自动创建网络和卷) docker-compose up -d[^3] # 4. 验证服务状态 docker ps | grep dify ``` **(三) 关键配置对接** 1. **访问Dify控制台**:`http://localhost:80` 2. **模型配置路径**: - 导航至 **设置 > 模型供应商** - 选择 Ollama 类型 - 填写API端点:`http://[OLLAMA_IP]:11434` 3. **系统推理模型绑定**: ```yaml # dify 配置文件修改示例 model_endpoints: ollama: api_base: "http://ollama:11434" models: - deepseek-7b ``` #### 三、验证部署 1. **测试模型响应**: ```python import requests response = requests.post("http://localhost:11434/api/generate", json={"model": "deepseek-7b", "prompt":"你好"}) print(response.text) ``` 2. **Dify应用测试**: - 创建新应用 > 选择对话型应用 - 在"模型"选项卡中选择已配置的DeepSeek模型 #### 四、常见问题解决 | 问题现象 | 解决方案 | |---------|----------| | 安装界面卡在step请求 | 使用`./scripts/install.sh`自动化脚本[^3] | | 模型加载失败 | 检查Ollama服务状态:`ollama list` | | API连接超时 | 验证Docker网络:`docker network inspect dify_default` |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值