最近迷恋DP,我看还是将这个主题先解决一些。
Problem
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Solution
求最大连续子序列
问题
思路:
dp[i] = max{dp[i-1]+a[i], a[i]};
- 包含a[i-1],dp[i] = dp[i-1] + a[i];
- 不包含a[i],dp[i] = a[i];
初值:dp[0] = a[0];
答案:遍历dp,找出最大。
时间复杂度O{n},空间复杂度O{n}
空间复杂度为N
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n);
int answer;
dp[0] = nums[0];
answer = dp[0];
for (int i = 1; i < n; ++i) {
dp[i] = max(dp[i-1]+nums[i], nums[i]);
if (answer < dp[i]) {
answer = dp[i];
}
}
return answer;
}
};
空间复杂度为1
在求answer的过程中,不需要保存所有dp
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n = nums.size();
int dp = nums[0], answer = nums[0];
for (int i = 1; i < n; ++i) {
dp = max(dp+nums[i], nums[i]);
//answer = max(dp, answer);
answer = (answer < dp ? dp : answer);
}
return answer;
}
};