53. Maximum Subarray

最近迷恋DP,我看还是将这个主题先解决一些。

Problem

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],

the contiguous subarray [4,-1,2,1] has the largest sum = 6.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Solution

最大连续子序列问题

思路:

dp[i] = max{dp[i-1]+a[i], a[i]};

  • 包含a[i-1],dp[i] = dp[i-1] + a[i];
  • 不包含a[i],dp[i] = a[i];

初值:dp[0] = a[0];

答案:遍历dp,找出最大。

时间复杂度O{n},空间复杂度O{n}

空间复杂度为N

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();

        vector<int> dp(n);
        int answer;

        dp[0] = nums[0];
        answer = dp[0];
        for (int i = 1; i < n; ++i) {
            dp[i] = max(dp[i-1]+nums[i], nums[i]);
            if (answer < dp[i]) {
                answer = dp[i];
            }
        }

        return answer;
    }
};

空间复杂度为1

在求answer的过程中,不需要保存所有dp

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();

        int dp = nums[0], answer = nums[0];
        for (int i = 1; i < n; ++i) {
            dp = max(dp+nums[i], nums[i]);
            //answer = max(dp, answer);
            answer = (answer < dp ? dp : answer); 
        }

        return answer;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值