Python数据可视化模块—Seaborn
python科学计算系列
1. 为什么介绍Seaborn库?
Matplotlib是Python主要的绘图库。但是,不建议直接使用它。虽然Matplotlib很强大,但它因此也很复杂,你的图经过大量的调整才能变得精致。因此,作为替代,推荐一开始使用Seaborn。Seaborn本质上使用Matplotlib作为核心库(就像Pandas对NumPy一样)。seaborn有以下几个优点:
- 默认情况下就能创建赏心悦目的图表。
- 创建具有统计意义的图。
- 能理解pandas的DataFrame类型,所以它们一起可以很好地工作。
虽然anaconda预装了pandas,却没安装seaborn。可以通过 conda install seaborn轻松地安装。当然,如果在终端中使用, 可以直接pip install seaborn,如果提示有什么错误,可以按照其说明,即可轻松安装上。
2. Seaborn使用
2.1. 管理图表的艺术
Matplotlib VS Seaborn
画一个吸引人注意的图表相当重要。当你探索一个数据集,需要画图表,图表看起来令人愉悦是件很高兴的事。在与你的观众交流观点时,可视化同样重要,同时,也很有必要去让图表吸引注意力和印入脑海里。Matplotlib自动化程度非常高,但是,掌握如何设置系统以便获得一个吸引人的图是相当困难的事。为了控制matplotlib图表的外观,Seaborn模块自带许多定制的主题和高级的接口。
- 导入模块
- 定义一个函数用来可视化弦函数,这将帮助我们了解我们可以控制的不同风格的参数
- 默认情况下matplotlib的画的图是这样的:
- 转换成Seaborn模块,只需要引入seaborn模块。
- Seaborn默认浅灰色背景与白色网络线的灵感来源于MATLAB,却比MATBLAB的颜色更多柔和。我们发现,网格线对于传播信息很有用,几乎在所有情况下,人们喜欢图甚于表。默认情况下白灰网格的形式可以避免过于刺眼。在多面作图的情况下,网络形式显得相当的有利,提供了一种作图结构,这对模块中的一些复杂工具非常重要。
- seaborn将matplotlib的参数划分为两个组。第一组控制图表的样式,第二组控制图的度量尺度元素,这样就可以轻易在纳入到不同的上下文中。
- 操控这些参数由两个函数提供接口。控制样式,用axes_style()和set
- 导入模块