数学建模
文章平均质量分 88
果州做题家
热情大方,工作积极肯干,有事业心!
展开
-
Python 数值计算与数值分析基础
当涉及到Python数值计算和数值分析时,可以参考本文给出的20个示例,这20个示例涵盖了一些常见的用法,供学习者参考。原创 2024-10-18 18:25:51 · 767 阅读 · 0 评论 -
车道线检测基础任务(Python实现)
基础任务:实际公路的车道线检测。1. 在所提供的公路图片上检测出车道线并标记;2. 在所提供的公路视频上检测出车道线并标记。本文探讨了如何使用Python完成车道线检测基础任务。原创 2022-06-15 17:31:17 · 4118 阅读 · 8 评论 -
【建模算法】CRITIC法(Python实现)
CRITIC是Diakoulaki(1995)提出一种评价指标客观赋权方法。CRITIC法是一种比熵权法和标准离差法更好的客观赋权法。它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重。考虑指标变异性大小的同时兼顾指标之间的相关性,并非数字越大就说明越重要,完全利用数据自身的客观属性进行科学评价。...原创 2022-06-10 10:08:53 · 9719 阅读 · 2 评论 -
【建模算法】变异系数法(Python实现)
变异系数法是根据统计学方法计算得出系统各指标变化程度的方法,是直接利用各项指标所包含的信息,通过计算得到指标的权重,因此是一种客观赋权的方法。变异系数法根据各评价指标当前值与目标值的变异程度来对各指标进行赋权,若某项指标的数值差异较大,能明确区分开各被评价对象,说明该指标的分辨信息丰富,因而应给该指标以较大的权重;反之,若各个被评价对象在某项指标上的数值差异较小,那么这项指标区分各评价对象的能力较弱,因而应给该指标较小的权重。...原创 2022-06-08 10:22:48 · 3444 阅读 · 0 评论 -
【建模算法】TOPSIS法(Python实现)
Topsis法,全称为Technique for Order Preference by Similarity to an Ideal Solution,中文常翻译为“优劣解距离法”或“逼近理想解排序法”,该方法是一种通过比较样本值与理想值的距离实现综合评价的方法。能够根据现有的数据,对个体进行评价排序。TOPSIS算法是直接用来评价的,它也可以和赋权方法一起使用。...原创 2022-06-04 17:51:38 · 6469 阅读 · 8 评论 -
【建模算法】熵权法(Python实现)
熵权法是通过寻找数据本身的规律来赋权重的一种方法。熵是热力学单位,在数学中,信息熵表示事件所包含的信息量的期望。根据定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其熵值越小,指标的离散程度越大,该指标对综合评价的影响(权重)越大。原创 2022-06-02 18:05:05 · 12279 阅读 · 2 评论 -
【建模算法】层次分析法(Python实现)
在很多情况下,我们对事物评价,应该要多维度评价。多维度评价之后我们要如何把它们合并成一个指标用于比较事物的好坏呢,这时候需要对各个指标赋权, 层次分析法就是用来赋权重的了。这个方法主观性比较强,在数据集比较小,实在不好比较的时候可以用这个方法,如果有别的选择还是尽量不要用这个算法比较好。可以看下以往建模获奖论文,此算法的出现频率还是挺高的,所以存在即有它存在的道理。原创 2022-05-30 17:47:31 · 13024 阅读 · 6 评论 -
【建模算法】matlab基于求解器intlinprog求解TSP问题
本案例说明如何使用二元整数规划来求解经典的TSP问题。此问题涉及找到一条历经一系列停留点(城市)的最短回路(路径)。在本例中有 52 个停留点,但你可以很轻松地更改 `nStops` 变量以得到不同规模的问题。对最初的问题进行求解后得到的解会包含子回路。这意味着找到的最优解并没有给出一条穿过所有点的连续路径,而是有几个独立的环路。然后,你可以使用迭代过程来确定子回路,添加约束,并重新运行优化,直到消除子回路。原创 2022-05-26 18:56:44 · 2697 阅读 · 0 评论 -
【建模算法】Python调用Gurobi求解TSP问题
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了Python调用Gurobi优化器求解TSP问题。原创 2022-05-18 15:52:25 · 9220 阅读 · 17 评论 -
【建模算法】Python调用scikit-opt工具箱中的蚁群算法求解TSP问题
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了Python调用scikit-opt工具箱中的蚁群算法求解TSP问题。原创 2022-05-17 17:38:21 · 1838 阅读 · 2 评论 -
【建模算法】Python调用scikit-opt工具箱中的粒子群算法求解TSP问题
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了Python调用scikit-opt工具箱中的粒子群算法求解TSP问题。原创 2022-05-16 18:44:20 · 2019 阅读 · 0 评论 -
【建模算法】Python调用scikit-opt工具箱中的模拟退火算法求解TSP问题
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了Python调用scikit-opt工具箱中的模拟退火算法求解TSP问题。原创 2022-05-15 19:17:27 · 2349 阅读 · 1 评论 -
【建模算法】Python调用scikit-opt工具箱中的遗传算法求解TSP问题
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了Python调用scikit-opt工具箱中的遗传算法求解TSP问题。原创 2022-05-12 10:45:39 · 1938 阅读 · 3 评论 -
【LKH算法体验】Python调用LKH算法求TSP问题
【LKH算法体验】**Python调用迄今为止最强悍的求解TSP问题的算法-LKH算法**LKH算法简介:Keld Helsgaun 是丹麦 罗斯基勒大学计算机科学专业的名誉副教授。 他于 1973 年在 哥本哈根大学获得DIKU 计算机科学硕士学位。他自 1975 年以来一直在罗斯基勒大学工作。他的研究兴趣包括人工智能(问题解决和启发式)和组合优化。原创 2022-05-12 09:22:32 · 6527 阅读 · 12 评论 -
【LKH算法体验】用matlab调用迄今为止最强悍的求解旅行商(TSP)的算法-LKH算法
【LKH算法体验】用matlab调用迄今为止最强悍的求解TSP问题的算法-LKH算法Keld Helsgaun 是丹麦 罗斯基勒大学计算机科学专业的名誉副教授。 他于 1973 年在 哥本哈根大学获得DIKU 计算机科学硕士学位。他自 1975 年以来一直在罗斯基勒大学工作。他的研究兴趣包括人工智能(问题解决和启发式)和组合优化。LKH 是Lin-Kernighan解决旅行商(TSP)问题启发式的有效实现。原创 2022-05-09 19:23:26 · 4169 阅读 · 6 评论 -
【建模算法】基于蚁群算法求解TSP问题(Python实现)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了基于蚁群算法求解TSP问题的Python实现。原创 2022-05-08 21:36:27 · 3397 阅读 · 3 评论 -
【建模算法】基于蚁群算法求解TSP问题(matlab求解)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了使用matlab软件,基于蚁群算法求解TSP问题。原创 2022-05-05 16:11:39 · 6096 阅读 · 6 评论 -
【建模算法】基于粒子群算法求解TSP问题(Python实现)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了基于粒子群算法求解TSP问题的Python实现。原创 2022-05-04 22:18:42 · 9515 阅读 · 23 评论 -
【建模算法】基于粒子群算法求解TSP问题(matlab求解)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了使用matlab软件,基于粒子群算法求解TSP问题。原创 2022-05-04 19:33:25 · 9281 阅读 · 14 评论 -
【建模算法】基于模拟退火算法求解TSP问题(Python实现)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了基于模拟退火算法求解TSP问题的Python实现。原创 2022-05-02 18:29:34 · 2565 阅读 · 3 评论 -
【建模算法】基于模拟退火算法求解TSP问题(matlab求解)
【建模算法】基于模拟退火算法求解TSP问题(matlab求解)TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了使用matlab软件,基于模拟退火算法求解TSP问题。一、问题描述 本案例以31个城市为例,假定31个城市的位置坐标如表1所列。寻找出一条最短的遍历31个城市的路径。城市编号X坐标Y坐标城市编号X坐原创 2022-05-02 16:35:54 · 4398 阅读 · 6 评论 -
【建模算法】基于遗传算法求解TSP问题(Python实现)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了基于遗传算法求解TSP问题的Python实现。原创 2022-04-26 17:26:22 · 17405 阅读 · 11 评论 -
【建模算法】基于遗传算法求解TSP问题(matlab求解)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了使用matlab软件基于遗传算法求解一个TSP问题。原创 2022-04-26 07:49:25 · 7599 阅读 · 0 评论 -
【建模算法】KNN分类(Python实现)
KNN(K- Nearest Neighbor)法即K最邻近法,最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。KNN算法的核心思想是,如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。原创 2022-04-24 18:04:12 · 4178 阅读 · 0 评论 -
【建模算法】动态规划与最优路径问题(matlab求解)
本文探讨了动态规划及其在路径规划中的应用。原创 2022-04-20 18:34:17 · 7818 阅读 · 0 评论 -
【建模算法】蒙特卡罗模拟法(Python实现)
蒙特卡罗(Monte Carlo)方法,也称为随机模拟(random simulation)。基本思想:为了解决数学、物理、工程技术等方面的问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。原创 2022-04-18 23:05:29 · 8057 阅读 · 1 评论 -
【建模算法】dbscan算法(python实现)
DBSCAN 算法是一种基于密度的空间聚类算法。该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其它空间对象)的数目不小于某一给定阀值。DBSCAN 算法的显著优点是聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类。原创 2022-04-19 16:55:56 · 6083 阅读 · 2 评论