论文笔记:Long Short-Term Memory

本文介绍了LSTM(长短期记忆网络)的基本概念及其如何解决传统RNN(循环神经网络)中梯度消失或爆炸的问题。LSTM通过引入记忆单元及三个门控机制(输入门、输出门和遗忘门),实现了更高效、稳定的学习过程,特别适用于处理长序列数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LongShort-Term Memory

摘要

通过recurrent BP方式来学着存储随时间间隔变化的信息会花费很长的时间。我们引进了新奇的,有效的,基于梯度的方法:LSTM(至少在1997年的时候这么评价还算公正)。 且能够解决一些标签比较长的分类任务。

LSTM现在基本会被用在RNN模型中,代替RNN的隐层单元,能够起到很好的长时间记忆效果。现阶段(2017)GRU跟LSTM都是基于门的单元,但是GRU有2个门,计算速度比LSTM(3个门)要快。

引言

RNN共享权重,权重修正速度比较慢,只有短时记忆。
problem 卷积“Back-Propagation Through Time”或者”Real-Time Recurrent Learning”, 误差信号随着反馈网络会趋向于(1)爆炸(2)消失 。 情况(1)会产生摆动权重,情况2 会浪费大量的时间,可能会一点也不工作。
remedy LSTM的提出就是为了解决上面提出的问题

LSTM

  1. Memory cells and gate units
    引进乘法输入单元和乘法输出单元。输入单元是为了保护存储在j中的记忆内容不受不相关输入的微小影响。同时,输出单元是为了保护其他的单元免受当前不相关信号产生的微小影响。
  2. 输入们 输出门 遗忘门
  3. 3.

RNN

RNN能够有效联系上下文信息就是因为他可以长时间记忆。梯度存在爆炸或者消失的问题,因此提出了LSTM。
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
LSTM的backpropagation
使用梯度下降,使用了RTRL和BPTT方法。4

Reference
1. Hochreiter, S, and J. Schmidhuber. “Long short-term memory.” Neural Computation 9.8(1997):1735-1780.
2. Graves, Alex. Long Short-Term Memory. Supervised Sequence Labelling with Recurrent Neural Networks. Springer Berlin Heidelberg, 2012:1735-1780.
3. http://www.jianshu.com/p/9dc9f41f0b29/ 这篇文章很不错


EMMA

SIAT

要获取 Long Short-Term Memory (LSTM) 的原始论文 PDF 文件,可以通过以下方法实现: ### 方法一:访问学术资源网站 Sepp Hochreiter 和 Jürgen Schmidhuber 在 1997 年发表了 LSTM 的开创性论文Long Short-Term Memory》。这篇论文可以在多个学术资源平台上找到,例如: - **arXiv**: 如果该论文已被上传到 arXiv,则可以直接通过搜索引擎输入标题查找。 - **Google Scholar**: 输入完整的论文名称 “Long Short-Term Memory”,通常会提供免费的 PDF 下载链接或者付费购买选项。 - **ResearchGate 或 Academia.edu**: 这些平台可能由作者或其他研究者分享了可公开下载的版本。 如果上述方式无法直接获得免费版 PDF,还可以尝试联系图书馆或教育机构订阅的服务数据库,比如 IEEE Xplore、SpringerLink 等[^1]。 ### 方法二:利用开源项目中的文档 一些深度学习框架(如 TensorFlow、PyTorch)以及教程博客可能会附带推荐阅读材料列表,其中包含经典模型的相关背景资料链接。此外,在 GitHub 上搜索关键词“lstm paper implementation”也可能发现有人整理好了原版文章供学习交流使用[^2]。 需要注意的是,在某些情况下,即使找到了合法渠道提供的电子副本,仍需注意版权规定以确保合理使用这些内容。 对于实际应用方面提到的新变种架构 xLSTM 改进了传统方法针对低频词汇建模效果不佳的问题;具体技术细节则需要查阅后续发展成果文献进一步了解[^3]。 ```python import requests def download_paper(url, filename="paper.pdf"): response = requests.get(url) with open(filename, 'wb') as f: f.write(response.content) # Example usage download_paper("https://www.example.com/path/to/lstm-paper", "Hochreiter_Schmidhuber_LSTM_1997.pdf") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值