4 随机向量,随机变量的独立性

1 随机向量及分布函数

1.1 随机向量

若随机变量 ξ 1 ( ω ) , ξ 2 ( ω ) , . . . , ξ n ( ω ) \xi_1 ( \omega ), \xi_2 ( \omega ), ..., \xi_n( \omega ) ξ1(ω),ξ2(ω),...,ξn(ω) 定义在同一概率空间 ( Ω , F , P ) ( \Omega, \mathcal{F}, \mathcal{P} ) (Ω,F,P) 上, 则称

ξ ⃗ ( ω ) = ( ξ 1 ( ω ) , ξ 2 ( ω ) , . . . , ξ n ( ω ) ) \vec{\xi} (\omega) = \big( \xi_1 ( \omega ), \xi_2 ( \omega ), ..., \xi_n( \omega ) \big) ξ (ω)=(ξ1(ω),ξ2(ω),...,ξn(ω))

构成一个 n n n 维随机向 (变) 量.

1.2 (联合) 分布函数 (Jonint C.D.F)

ξ ⃗ ( ω ) ∼ F ( x 1 , x 2 , . . . , x n ) = P { ξ 1 ( ω ) ≤ x 1 , . . . , ξ n ( ω ) ≤ x n } . \vec{\xi} (\omega) \sim F (x_1, x_2, ..., x_n) = P \{ \xi_1 ( \omega ) \leq x_1, ..., \xi_n ( \omega ) \leq x_n \}. ξ (ω)F(x1,x2,...,xn)=P{ξ1(ω)x1,...,ξn(ω)xn}.

其中:
F : R n ↦ [ 0 , 1 ] F: \mathbb{R}^n \mapsto [0, 1] F:Rn[0,1];
{ ω : ξ i ( ω ) ≤ x i ,   i = 1 , 2 , . . . , n } ∈ F \{ \omega: \xi_i (\omega) \leq x_i, ~ i = 1, 2, ..., n \} \in \mathcal{F} {ω:ξi(ω)xi, i=1,2,...,n}F;
∩ i = 1 n { ξ n − 1 ( x i ) } ∈ B o r e l   R n \cap_{i = 1}^n \{ \xi_n^{-1} (x_i) \} \in Borel ~ \mathbb{R}^n i=1n{ξn1(xi)}Borel Rn.

性质:

  1. F ( x ⃗ ) F(\vec{x}) F(x ) 右连续;
  2. lim ⁡ x i → − ∞ F ( x 1 , . . . , x n ) = 0 \displaystyle \lim_{x_i \to - \infty} F(x_1, ..., x_n) = 0 xilimF(x1,...,xn)=0;
    ( ∵   ∀   i ∈ { 1 , 2 , . . . , n } ,   ∩ j = 1 n { ξ j ≤ x j } ⊂ { ξ i ≤ x i } \because ~ \forall ~ i \in \{ 1, 2, ..., n \}, ~ \cap_{j = 1}^n \{ \xi_j \leq x_j \} \subset \{ \xi_i \leq x_i \}   i{1,2,...,n}, j=1n{ξjxj}{ξixi}, 且 lim ⁡ x i → − ∞ F ( x i ) = 0 \displaystyle \lim_{x_i \to - \infty} F(x_i) = 0 xilimF(xi)=0 )
  3. lim ⁡ x i → + ∞ F ( x 1 , . . . , x n ) = F n − 1 ( x 1 , . . . , x i − 1 , x i + 1 , . . . x n ) \displaystyle \lim_{x_i \to + \infty} F(x_1, ..., x_n) = F_{n-1} (x_1, ..., x_{i-1}, x_{i+1}, ...x_n) xi+limF(x1,...,xn)=Fn1(x1,...,xi1,xi+1,...xn).
    ( ξ 1 , . . . , ξ i − 1 , ξ i + 1 , . . . , ξ n ) (\xi_1, ..., \xi_{i-1}, \xi_{i+1}, ..., \xi_n) (ξ1,...,ξi1,ξi+1,...,ξn) 的 C.D.F.
    特别地 ξ i ∼ F i ( x i ) = lim ⁡ x j → + ∞ F ( x 1 , . . . , x i , . . . , x n ) ,   j ≠ i \xi_i \sim F_i (x_i) = \displaystyle \lim_{x_j \to + \infty} F(x_1, ..., x_i, ..., x_n), ~ j \neq i ξiFi(xi)=xj+limF(x1,...,xi,...,xn), j=i, ;称为它的边际(Marginal)分布.
  4. 单调性: 关于每个分量单调不减.
    一元: ∀   x 1 < x 2 ,   P ( x 1 < ξ ≤ x 2 ) = F ( x 2 ) − F ( x 1 ) > 0 \forall ~ x_1 < x_2, ~ P(x_1 < \xi \leq x_2) = F(x_2) - F(x_1) > 0  x1<x2, P(x1<ξx2)=F(x2)F(x1)>0;
    二元: ∀   x 1 ′ < x 1 ,   x 2 ′ < x 2 \forall ~ x_1' < x_1, ~ x_2' < x_2  x1<x1, x2<x2,
        P ( x 1 ′ < ξ 1 ≤ x 1 ,   x 2 ′ < ξ 2 ≤ x 2 ) = F ( x 1 , x 2 ) − F ( x 1 ′ , x 2 ) − F ( x 1 , x 2 ′ ) + F ( x 1 ′ , x 2 ′ ) ; \begin{aligned} &P(x_1' < \xi_1 \leq x_1, ~ x_2' < \xi_2 \leq x_2) = \\ &F(x_1, x_2) - F(x_1', x_2) - F(x_1, x_2') + F(x_1', x_2'); \end{aligned} P(x1<ξ1x1, x2<ξ2x2)=F(x1,x2)F(x1,x2)F(x1,x2)+F(x1,x2);
    n n n 元: ∀   x 1 ′ < x 1 , . . . ,   x n ′ < x n \forall ~ x_1' < x_1, ..., ~ x_n' < x_n  x1<x1,..., xn<xn,
        P ( x 1 ′ < ξ 1 ≤ x 1 , . . . ,   x n ′ < ξ n ≤ x n ) = F ( x 1 , . . . , x n ) − ∑ F ( 含 有 1 个 ′ 的 ) + ∑ F ( 含 有 2 个 ′ 的 ) + . . . + ( − 1 ) n ∑ F ( 含 有 n 个 ′ 的 ) ; \begin{aligned} &P(x_1' < \xi_1 \leq x_1, ..., ~ x_n' < \xi_n \leq x_n) = \\ &F(x_1, ..., x_n) - \sum F(含有1个'的) + \sum F(含有2个'的) \\ &+ ... +(-1)^n \sum F(含有n个'的); \end{aligned} P(x1<ξ1x1,..., xn<ξnxn)=F(x1,...,xn)F(1)+F(2)+...+(1)nF(n);

满足以上四条性质的函数必是某随机变量的分布函数.

2 常见的多元随机变量

2.1 离散型

  1. 多项分布: (Multinomial Distribution)
    n n n次试验中 A i A_i Ai发生 n i n_i ni次, i = 1 , . . . , r i = 1, ..., r i=1,...,r, 即一次试验结果有 r r r 种情况.
    P ( A i ) = p i P(A_i) = p_i P(Ai)=pi, n = ∑ i = 1 r n i n = \sum_{i = 1}^r n_i n=i=1rni, ∑ i = 1 r p i = 1 \sum_{i = 1}^r p_i = 1 i=1rpi=1,
    P { ξ 1 = n 1 , . . . ,   ξ r = n r } = n ! n 1 ! . . . n r ! p 1 n 1 . . . p r n r \begin{aligned} P \{ \xi_1 = n_1, ..., ~\xi_r = n_r \} = \frac{n!}{n_1!...n_r!} p_1^{n_1}...p_r^{n_r} \end{aligned} P{ξ1=n1,..., ξr=nr}=n1!...nr!n!p1n1...prnr.
  2. 超几何分布: (Hypergeometric Distribution)
    袋中共有 N N N 只球, 第 i i i 种球有 N i N_i Ni 只, 共取出 n n n 只球, 第 i i i 种球取出了 n i n_i ni 只.
    N = ∑ i = 1 r N i N = \sum_{i = 1}^r N_i N=i=1rNi, n = ∑ i = 1 r n i n = \sum_{i = 1}^r n_i n=i=1rni, i = 1 , . . . , r i = 1, ..., r i=1,...,r, 即共有 i i i 种球.
    P { ξ 1 = n 1 , . . . ,   ξ r = n r } = ( N n ) ( N 1 n 1 ) ( N 2 n 2 ) . . . ( N r n r ) \begin{aligned} P \{ \xi_1 = n_1, ..., ~\xi_r = n_r \} = \frac{N \choose n}{ {N_1 \choose n_1} {N_2 \choose n_2}... {N_r \choose n_r} } \end{aligned} P{ξ1=n1,..., ξr=nr}=(n1N1)(n2N2)...(nrNr)(nN).

2.2 连续型

连续型随机变量密度函数 p ( x 1 , . . . , x n ) p(x_1, ..., x_n) p(x1,...,xn) 的定义: 存在非负函数 p ( x 1 , . . . , x n ) p(x_1, ..., x_n) p(x1,...,xn) 使得

F ( x 1 , . . . , x n ) = ∫ − ∞ x 1 . . . ∫ − ∞ x n p ( y 1 , . . . , y n )   d y 1 . . . d y n . F(x_1, ..., x_n) = \int_{- \infty}^{x_1} ... \int_{- \infty}^{x_n} p(y_1, ..., y_n) ~ dy_1...dy_n. F(x1,...,xn)=x1...xnp(y1,...,yn) dy1...dyn.

  1. 均匀分布: (Uniform Distribution)
    x ⃗ ∼ N ( μ ⃗ , Σ ) \vec{x} \sim N(\vec{\mu}, \Sigma) x N(μ ,Σ)
    有限可测区域 G ∈ R n G \in \mathbb{R}^n GRn, 其测度为 S S S.
    p ( x 1 , x 2 , . . . , x n ) = { 1 S ,     ( x 1 , x 2 , . . . , x n ) ∈ G ; 0 ,      ( x 1 , x 2 , . . . , x n ) ∉ G . p(x_1, x_2, ..., x_n) = \begin{cases} \frac{1}{S}, ~~~ (x_1, x_2, ..., x_n) \in G; \\ 0, ~~~~ (x_1, x_2, ..., x_n) \notin G. \end{cases} p(x1,x2,...,xn)={S1,   (x1,x2,...,xn)G;0,    (x1,x2,...,xn)/G.
  2. 多元正太分布: (Multivariate Normal Distribution)
    p ( x 1 , x 2 , . . . , x n ) = p ( x ⃗ ) = 1 ( 2 π ) n 2 ∣ Σ ∣ 1 2 e x p { − 1 2 ( x ⃗ − μ ⃗ ) Σ − 1 ( x ⃗ − μ ⃗ ) } \begin{aligned} p(x_1, x_2, ..., x_n) = p(\vec{x}) = \frac{1}{(2 \pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2} } } exp \{ - \frac{1}{2} (\vec{x} - \vec{\mu}) \Sigma^{-1} (\vec{x} - \vec{\mu}) \} \end{aligned} p(x1,x2,...,xn)=p(x )=(2π)2nΣ211exp{21(x μ )Σ1(x μ )}
    其中 μ ⃗ = ( μ 1 , μ 2 , . . . , μ n ) \vec{\mu} = (\mu_1, \mu_2, ..., \mu_n) μ =(μ1,μ2,...,μn), Σ = ( σ i j ) \Sigma = (\sigma_{ij}) Σ=(σij) n n n 阶正定对称矩阵.
  • n = 1 n = 1 n=1 时, μ ∈ R \mu \in \mathbb{R} μR, Σ = σ 2 > 0 \Sigma = \sigma^2 > 0 Σ=σ2>0;
  • n = 2 n = 2 n=2 时, ( x , y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (x, y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho) (x,y)N(μ1,μ2,σ12,σ22,ρ),
    μ ⃗ = ( μ 1 , μ 2 ) \vec{\mu} = (\mu_1, \mu_2) μ =(μ1,μ2), Σ = ( σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ) \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} Σ=(σ12ρσ1σ2ρσ1σ2σ22),
    p ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e x p { − 1 2 ( 1 − ρ ) 2 [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } \begin{aligned} p(x, y) = \frac{1}{2 \pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} exp \{ -\frac{1}{2(1 - \rho)^2} \big[ \frac{(x - \mu_1)^2}{\sigma_1^2} - 2 \rho \frac{(x - \mu_1)(y - \mu_2)}{\sigma_1 \sigma_2} + \frac{(y - \mu_2)^2}{\sigma_2^2} \big] \} \end{aligned} p(x,y)=2πσ1σ21ρ2 1exp{2(1ρ)21[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]},
    其典型分解为
    p ( x , y ) = 1 2 π σ 1 e x p { − ( x − μ 1 ) 2 2 σ 1 2 } ⋅ 1 2 π σ 2 1 − ρ 2 e x p { − [ y − ( μ 2 + ρ σ 1 σ 2 ( x − μ 1 ) ) ] 2 2 σ 2 2 ( 1 − ρ 2 ) } \begin{aligned} p(x, y) = \frac{1}{\sqrt{2 \pi} \sigma_1} exp \{- \frac{(x - \mu_1)^2}{2 \sigma_1^2}\} \cdot \frac{1}{\sqrt{2 \pi} \sigma_2 \sqrt{1 - \rho^2}} exp \{ - \frac{ \big[ y - \big( \mu_2 + \rho \frac{\sigma_1}{\sigma_2} (x - \mu_1) \big) \big]^2 }{2 \sigma_2^2 (1 - \rho^2)} \} \end{aligned} p(x,y)=2π σ11exp{2σ12(xμ1)2}2π σ21ρ2 1exp{2σ22(1ρ2)[y(μ2+ρσ2σ1(xμ1))]2}.

3 边际分布及条件分布 (Conditional Distribution)

3.1 边际分布

设多元随机变量 x ⃗ ∼ F ( x ⃗ ) \vec{x} \sim F (\vec{x}) x F(x ), 则 x j x_j xj 的边际分布为 F j ( x j ) = F ( + ∞ , + ∞ , . . . , x j , . . . ) F_j (x_j) = F (+ \infty, + \infty, ..., x_j, ...) Fj(xj)=F(+,+,...,xj,...).

  • 离散型: n = 2 n = 2 n=2 时, p i j = P ( x = x i , y = y j ) p_{ij} = P(x = x_i, y = y_j) pij=P(x=xi,y=yj), i , j = 1 , 2 , . . . i, j = 1, 2, ... i,j=1,2,....
    x x x 的边际分布为
    P ( x = x i ) = P ( x = x i , ∪ j = 1 ∞ { y = y j } ) = ∑ j = 1 ∞ P ( x = x i , y = y j ) = ∑ j = 1 ∞ p i j = p i . . \begin{aligned} P(x = x_i) &= P(x = x_i, \cup_{j = 1}^{\infty} \{ y = y_j \}) \\ &= \sum_{j = 1}^{\infty} P(x = x_i, y = y_j) \\ &= \sum_{j = 1}^{\infty} p_{ij} = p_{i.}.\end{aligned} P(x=xi)=P(x=xi,j=1{y=yj})=j=1P(x=xi,y=yj)=j=1pij=pi..
  • 连续型:
    F t ( x t ) = F ( + ∞ , + ∞ , . . . , x t , . . . ) = ∫ − ∞ x t [ ∫ − ∞ + ∞ . . . ∫ − ∞ + ∞ f ( y ⃗ )   d y 1 d y 2 . . . d y t − 1 d y t + 1 . . . ]   d y t \begin{aligned} F_t(x_t) &= F(+ \infty, + \infty, ..., x_t, ...) \\ &= \int_{- \infty}^{x_t} \bigg[ \int_{- \infty}^{+ \infty} ... \int_{- \infty}^{+ \infty} f(\vec{y}) ~ dy_1 dy_2 ... dy_{t-1} dy_{t+1} ... \bigg]~ dy_t \end{aligned} Ft(xt)=F(+,+,...,xt,...)=xt[+...+f(y ) dy1dy2...dyt1dyt+1...] dyt
  • 混合型:
    eg. x ∼ N ( 0 , 1 ) x \sim N(0, 1) xN(0,1), y = { − 1 ,     x < − 1 ; x ,     − 1 ≤ x < 1 ; 1 ,     x ≥ 1. y = \begin{cases} -1, ~~~ x < -1; \\ x, ~~~ -1 \leq x < 1; \\ 1, ~~~ x \geq 1. \end{cases} y=1,   x<1;x,   1x<1;1,   x1.

3.2 条件分布

以二元条件分布为例 F ( x , y 0 ) = P ( X ≤ x   ∣   Y = y 0 ) F(x, y_0) = P(X \leq x ~ | ~ Y = y_0) F(x,y0)=P(Xx  Y=y0).

  • 离散型: P ( x = x i   ∣   y = y j ) = P ( x = x i , y = y i ) P ( y = y i ) = p i j p . j \begin{aligned} P(x = x_{i} ~ | ~ y = y_{j}) = \frac{P(x = x_i, y = y_i)}{P(y = y_i)} = \frac{p_{ij}}{p_{.j}} \end{aligned} P(x=xi  y=yj)=P(y=yi)P(x=xi,y=yi)=p.jpij;
  • 连续型:
    P ( x ≤ X < x + △ x   ∣   y ≤ Y < y + △ y ) = P ( x ≤ X < x + △ x ,   y ≤ Y < y + △ y ) P ( y ≤ Y < y + △ y ) = ∫ x x + △ x ∫ y y + △ y f ( s , t )   d t d s ∫ − ∞ + ∞ ∫ y y + △ y f ( s , t )   d t d s ; \begin{aligned} &P(x \leq X < x + \triangle x ~ | ~ y \leq Y < y + \triangle y) \\ = & \frac{P(x \leq X < x + \triangle x, ~ y \leq Y < y + \triangle y)}{P( y \leq Y < y + \triangle y)} \\ = & \frac{\int_x^{x + \triangle x} \int_{y}^{y + \triangle y} f(s, t) ~ dt ds}{\int_{- \infty}^{+ \infty} \int_{y}^{y + \triangle y} f(s, t) ~ dt ds}; \end{aligned} ==P(xX<x+x  yY<y+y)P(yY<y+y)P(xX<x+x, yY<y+y)+yy+yf(s,t) dtdsxx+xyy+yf(s,t) dtds;
    P ( x   ∣   y ) = lim ⁡ △ x → 0 △ y → 0 1 △ x P ( x ≤ X < x + △ x   ∣   y ≤ Y < y + △ y ) = lim ⁡ △ x → 0 △ y → 0 1 △ x △ y ∫ x x + △ x ∫ y y + △ y f ( s , t )   d t d s ∫ − ∞ + ∞ [ 1 △ y ∫ y y + △ y f ( s , t )   d t ] d s = f ( x , y ) ∫ − ∞ + ∞ f ( s , y )   d s = f ( x , y ) f y ( y ) . \begin{aligned} P(x ~ | ~ y) &= \lim_{{ \begin{gathered} \triangle x \to 0 \\ \triangle y \to 0 \end{gathered}}} \frac{1}{\triangle x} P(x \leq X < x + \triangle x ~ | ~ y \leq Y < y + \triangle y) \\ &=\lim_{{ \begin{gathered} \triangle x \to 0 \\ \triangle y \to 0 \end{gathered}}} \frac{\frac{1}{\triangle x \triangle y} \int_x^{x + \triangle x} \int_{y}^{y + \triangle y} f(s, t) ~ dt ds}{\int_{- \infty}^{+ \infty} \big[ \frac{1}{\triangle y} \int_{y}^{y + \triangle y} f(s, t) ~ dt \big] ds} \\ &= \frac{f(x, y)}{\int_{- \infty}^{+ \infty} f(s, y) ~ ds} = \frac{f(x, y)}{f_y (y)}. \end{aligned} P(x  y)=x0y0limx1P(xX<x+x  yY<y+y)=x0y0lim+[y1yy+yf(s,t) dt]dsxy1xx+xyy+yf(s,t) dtds=+f(s,y) dsf(x,y)=fy(y)f(x,y).
    f y ( y ) = 0 f_{y}(y) = 0 fy(y)=0, 则 p ( x   ∣   y ) = 0 p (x ~ | ~ y) = 0 p(x  y)=0.

例: 二元正态分布 ( x , y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (x, y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho) (x,y)N(μ1,μ2,σ12,σ22,ρ)
边际分布: X ∼ N ( μ 1 , σ 1 2 ) X \sim N(\mu_1, \sigma_1^2) XN(μ1,σ12); Y ∼ N ( μ 2 , σ 2 2 ) Y \sim N(\mu_2, \sigma_2^2) YN(μ2,σ22);
条件分布: Y   ∣   X = x 0 ∼ N ( μ 2 + ρ σ 2 σ 1 ( x 0 − μ 1 ) , σ 2 2 ( 1 − ρ 2 ) ) Y ~ | ~ X = x_0 \sim N \big( \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_0 - \mu_1), \sigma_2^2 (1 - \rho^2) \big) Y  X=x0N(μ2+ρσ1σ2(x0μ1),σ22(1ρ2)).
     当 ρ = 0 \rho = 0 ρ=0 (即 x x x, y y y 独立) 时, 即为 Y Y Y 的边际分布.

3 随机变量的独立性

对于 R \mathbb{R} R 上的任意 Borel 集 A A A, B B B
P ( X ∈ A , Y ∈ B , . . . ) = P ( X ∈ A ) P ( Y ∈ B ) . . . , P(X \in A, Y \in B, ...) = P(X \in A) P(Y \in B) ..., P(XA,YB,...)=P(XA)P(YB)...,
则称 A A A, B B B… 独立.
特别地, A = ( − ∞ , x ] A = (- \infty , x] A=(,x], B = ( − ∞ , y ] B = (- \infty , y] B=(,y]… 时,
P ( X ≤ x , Y ≤ y , . . . ) = P ( X ≤ x ) P ( Y ≤ y ) . . . . P(X \leq x, Y \leq y, ...) = P(X \leq x) P(Y \leq y) .... P(Xx,Yy,...)=P(Xx)P(Yy)....
以两个变量为例, 即 F ( x , y ) = F x ( x ) F y ( y ) F(x, y) = F_x (x) F_y (y) F(x,y)=Fx(x)Fy(y) ∀   x , y ∈ R \forall ~ x, y \in \mathbb{R}  x,yR 成立.
即定义域中任意点满足: 联合分布 = ∏ \prod 边际分布.

  1. 离散型
    ( x 1 , x 2 , . . . x n ) T (x_1, x_2, ... x_n)^T (x1,x2,...xn)T A 1 , . . . , A n A_1, ..., A_n A1,...,An,
    P ( x 1 ∈ A 1 , . . . , x n ∈ A n ) = P ( x 1 ∈ A 1 ) . . . P ( x n ∈ A n ) P(x_1 \in A_1, ... , x_n \in A_n) = P(x_1 \in A_1)... P(x_n \in A_n) P(x1A1,...,xnAn)=P(x1A1)...P(xnAn).
  2. 连续型
    f ( x 1 , . . . , x n ) = ∂ n F ( x 1 , . . . , x n ) ∂ x 1 . . . ∂ x n = f x 1 ( x 1 ) . . . f x n ( x n ) . \begin{aligned} f(x_1, ..., x_n) = \frac{\partial^n F(x_1, ..., x_n)}{\partial x_1 ... \partial x_n} = f_{x_1} (x_1)... f_{x_n} (x_n) \end{aligned}. f(x1,...,xn)=x1...xnnF(x1,...,xn)=fx1(x1)...fxn(xn).
    对于几乎处处 x ⃗ ∈ R n \vec{x} \in \mathbb{R}^n x Rn 成立.
    eg. f ( s ) = { f ( s 0 ) + t ,     s = s 0 ; f ( s ) ,             s ≠ s 0 . f(s) = \begin{cases} f(s_0) + t, ~~~ s = s_0; \\ f(s), ~~~~~~~~~~~ s \neq s_0. \end{cases} f(s)={f(s0)+t,   s=s0;f(s),           s=s0.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值