1 概率论基本概念

1 随机事件

随机试验三要素:

  1. 可在同等条件下重复;
  2. 结果是可被事先预测的多种可能;
  3. 试验前结果不确定.

2 样本空间

样本空间 (Sample Space) : 随机试验 E E E 的所有可能结果的集合, 记作 Ω = { ω } \Omega = \{ \omega \} Ω={ω}.

样本点 (Sample Point) : 一个样本空间众多的每个元素.

  • 样本空间中样本点的个数为有限个或可列个的情况为离散样本空间 (Discrete Sample Space) ;
  • 样本空间中样本点的个数为不可列无限个的情况为连续样本空间 (Continuous Sample Space) ;

3 事件运算

事件 (Event) : 某些基本事件构成的集合. 为样本空间的子集.

德摩根定律 (De Morgan’s Laws) :

  • A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A \cup B} = \overline{A} \cap \overline{B} AB=AB;
  • A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A \cap B} = \overline{A} \cup \overline{B} AB=AB;
  • ∪ i = 1 n A i ‾ = ∩ i = 1 n A i ‾ \overline{ \cup_{i=1}^{n} A_i} = \cap_{i=1}^{n} \overline{A_i} i=1nAi=i=1nAi;
  • ∩ i = 1 n A i ‾ = ∪ i = 1 n A i ‾ \overline{ \cap_{i=1}^{n} A_i} = \cup_{i=1}^{n} \overline{A_i} i=1nAi=i=1nAi ( n → + ∞ n \rightarrow + \infty n+ 也成立) .

4 概率

古典概型 (Classical Probability) : 样本空间 S S S 中有有限个等可能的两两互不相容的基本事件, 个数记为 # { S } \# \{ S \} #{S}, 事件 A A A 发生的概率为 P ( A ) = # { A } # { S } P(A) = \frac{\# \{ A \} }{\# \{ S \} } P(A)=#{S}#{A}.

例:

  • 有重复的排列:
    • n n n 个不同小球有放回取出 r r r次: n r n^r nr;
    • n n n 个不同小球有放回放入 r r r个格子: r n r^n rn;
  • 有重复的组合:
    • n n n 个相同小球放入 r r r 个格子 (可空) : C n + r − 1 n C_{n+r-1}^{n} Cn+r1n;
    • n n n 个相同小球放入 r r r 个格子 (不可空) : C n − 1 r − 1 C_{n-1}^{r-1} Cn1r1.

几何概型 (Geometric Probability) : P ( A g ) = g 的 测 度 Ω 的 测 度 P(Ag) = \frac{g的测度}{\Omega的测度} P(Ag)=Ωg.

频率 (Frequency) 的性质:

  1. 0 ≤ f n ( A ) ≤ 1 0 \leq f_n (A) \leq 1 0fn(A)1;
  2. f n ( S ) = 1 f_n (S) = 1 fn(S)=1;
  3. A 1 , A 2 , . . . , A k A_1, A_2, ..., A_k A1,A2,...,Ak两两互斥, f ( A 1 ∪ A 2 ∪ A k ) = f n ( A 1 ) + f n ( A 2 ) + . . . + f n ( A k ) f(A_1 \cup A_2 \cup A_k) = f_n (A_1) + f_n (A_2) + ... + f_n (A_k) f(A1A2Ak)=fn(A1)+fn(A2)+...+fn(Ak).

例: 蒲丰投针
投针
压线概率: P = 1 / 2 ∫ 0 π l sin ⁡ ( ϕ )   d ϕ 1 / 2 a π n = 2 l π a P = \frac{1/2 \int_0^{\pi} l \sin(\phi) ~ d \phi}{1/2 a \pi} n= \frac{2l}{\pi a} P=1/2aπ1/20πlsin(ϕ) dϕn=πa2l.

事件 σ \sigma σ: F \mathcal{F} F 是由样本空间 Ω \Omega Ω 的子集组成的集类, 满足:

  1. Ω ∈ F \Omega \in \mathcal{F} ΩF;
  2. A ∈ F A \in \mathcal{F} AF, 则 A ‾ ∈ F \overline{A} \in \mathcal{F} AF ( “取补” 运算封闭) ;
  3. A n ∈ F A_n \in \mathcal{F} AnF, n = 1 , 2 , . . . n = 1, 2, ... n=1,2,..., 则 ∪ n = 1 ∞ A n ∈ F \cup_{n = 1}^{\infty} A_n \in \mathcal{F} n=1AnF ( “可列并” 运算封闭) .

则称 F \mathcal{F} F σ \sigma σ 域, F \mathcal{F} F 中的元素为事件.

一维Borel σ \sigma σ: 在全体实数 R 1 \mathbb{R}^1 R1 中, 由一切形为 [ a , b ) [a, b) [a,b) 的有界左闭右开区间构成的集类所产生的 σ \sigma σ 域. 记之为 B 1 \mathcal{B}_1 B1. B 1 \mathcal{B}_1 B1 中的集合为一维Borel点集.
B 1 \mathcal{B}_1 B1 包括了实数中 (大概) 所有感兴趣的集.

概率 (Probability) : 设 Ω \Omega Ω 为一个样本空间, F \mathcal{F} F 为的某些子集组成的一个事件 σ \sigma σ 域. 如果对任一事件 A ∈ F A \in \mathcal{F} AF, 定义在 F \mathcal{F} F 上的一个实值函数 P ( A ) P(A) P(A) 满足:

  1. 非负性: P ( A ) ≥ 0 , ∀ A ∈ F P(A) \geq 0, \forall A \in \mathcal{F} P(A)0,AF;
  2. 规范性: P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1;
  3. 可列可加性: A i ∈ F A_i \in \mathcal{F} AiF, i = 1 , 2 , . . . i = 1, 2, ... i=1,2,... 且两两互不相容, 则 P ( A 1 + A 2 + . . . ) = P ( A 1 ) + P ( A 2 ) + . . . P(A_1 + A_2 + ...) = P(A_1) + P(A_2) + ... P(A1+A2+...)=P(A1)+P(A2)+... ;

则称 P ( A ) P(A) P(A) 为事件 A A A 的概率, 称三元总体 ( Ω , F , P ) (\Omega, \mathcal{F}, \mathcal{P}) (Ω,F,P)概率空间 (Probability Space) .
所以概率 P P P是个集合函数, 定义域为 F \mathcal{F} F, 值域为 [ 0 , 1 ] [0, 1] [0,1].

概率的性质:

  1. P ( ∅ ) = 0 P(\emptyset) = 0 P()=0 (由可列可加性) ;
  2. 有限可加性: P ( A 1 + A 2 + . . . + A n ) = P ( A 1 ) + P ( A 2 ) + . . . P ( A n ) P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... P(A_n) P(A1+A2+...+An)=P(A1)+P(A2)+...P(An) (由可列可加性及性质1) ;
  3. P ( A ‾ ) = 1 − P ( A ) P(\overline{A}) = 1 - P(A) P(A)=1P(A);
  4. ∀ A , B ∈ F \forall A, B \in \mathcal{F} A,BF, P ( A − B ) = P ( A ) − P ( A B ) P(A - B) = P(A) - P(AB) P(AB)=P(A)P(AB);
  5. A ⊂ B A \subset B AB, 则 P ( B − A ) = P ( B ) − P ( A ) P(B - A) = P(B) - P(A) P(BA)=P(B)P(A);
  6. P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B) = P(A) + P(B) - P(A \cap B) P(AB)=P(A)+P(B)P(AB);
  7. 容斥原理:
    P ( ∪ i = 1 n E i ) = ∑ i = 1 n P ( E i ) − ∑ i 1 < i 2 P ( E i 1 E i 2 ) + . . . + ( − 1 ) n P ( E 1 E 2 . . . E n ) . \begin{aligned} P(\cup_{i = 1}^{n}E_i) = &\sum_{i = 1}^{n} P(E_i) - \sum_{i_1 < i_2} P(E_{i_1}E_{i_2}) \\\\ &+ ... +(-1)^n P(E_1E_2...E_n). \end{aligned} P(i=1nEi)=i=1nP(Ei)i1<i2P(Ei1Ei2)+...+(1)nP(E1E2...En).

推论:

  1. A ⊂ B A \subset B AB, 则 P ( A ) ≤ P ( B ) P(A) \leq P(B) P(A)P(B);
  2. 布尔不等式: P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A \cup B) \leq P(A) + P(B) P(AB)P(A)+P(B);
  3. Bonferroni不等式: P ( A B ) ≥ P ( A ) + P ( B ) − 1 P(AB) \geq P(A) + P(B) - 1 P(AB)P(A)+P(B)1.
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值