7_6_P题 Wall 题解[poj 1113] (凸包)

题目链接

简单题意

给出城堡的顶点,要在城堡外建一圈城墙,城墙到城堡的距离最少为L,问城墙的长度最小为多少

思路

猜想,就是城堡顶点的凸包的周长+一个半径为L的圆的周长,证明如下

引自这里
证明如下:假如顺时针给出四个点A、B、C、D。组成了凸四边形ABCD。我们不妨过A点作AE垂直于AB,同时过A点再作AF垂直于AD,过B点作BG、BH分别垂直于AB、BC。连结EG,垂线段的长度为L,过A点以AE为半径作一段弧连到AF,同理,使GH成为一段弧。此时EG=AB(边),AB段城墙的最小值为EF+弧EF+弧GH=AB+弧EF+弧GH。对所有点进行同样的操作后,可知城墙的最小值=四边形的周长+相应顶点的弧长(半径都为L)之和。
下面证明这些顶点弧长组成一个圆。依然以前面的四边形为例。A、B、C、D四顶点各成周角,总和为360*4=1440度,四边形内角和为360度,每个顶点作两条垂线,总角度为4*2*90=720度,所以总圆周角为1440-360-720=360度,刚好组成圆。
所以四边形ABCD的围墙最短= 四边形的周长+圆周长。

推广到任意多边形,用同样的方法,城墙最短=凸包的周长 + 以L为半径的圆的周长。
首先,我们得出城墙最短=凸包的周长 + 相应顶点的弧长(半径都为L)之和。
再证明 相应顶点的弧长(半径都为L)之和=以L为半径的圆的周长。
事实上,设凸包顶点为n,n个顶点组成n个周角,角度为360*n=2*180*n,凸包的内角和为180*(n-2),作了2*n条垂线,和为2*n*90=180*n,所以总圆周角为2*180*n-180*(n-2)-180*n=360,组成圆。

样例图示

直接跑模板即可

代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>

using namespace std;

const int maxn = 1010;
int n, m, ans;
double r;

// -------------------- 通用基本常数 --------------------

const double eps = 1e-8;
const double pi  = acos(-1.0);

// -------------------- 通用基本函数 --------------------

// 计算几何误差修正
inline int cmp(double x) {
    return x < -eps ? -1 : (x > eps);
}

// 计算一个数的平方
inline double sqr(double x) {
    return x * x;
}

inline double mySqrt(double n) {
    return sqrt(max(0.0, n));
}

// -------------------- 二维点(向量)类 --------------------

struct Point {
    double x, y;
    Point() {}
    Point(double x, double y): x(x), y(y) {}
    // 输入一个点
    void input() {
        scanf("%lf%lf", &x, &y);
    }
    friend Point operator + (const Point& a, const Point& b) {
        return Point(a.x + b.x, a.y + b.y);
    }
    friend Point operator - (const Point& a, const Point& b) {
        return Point(a.x - b.x, a.y - b.y);
    }
    friend bool operator < (const Point& a, const Point& b) {
        return cmp(a.x - b.x) ? cmp(a.x - b.x) < 0 : cmp(a.y - b.y) < 0;
    }
    friend bool operator == (const Point& a, const Point& b) {
        return cmp(a.x - b.x) == 0 && cmp(a.y - b.y) == 0;
    }
    friend Point operator * (const Point& a, const double& b) {
        return Point(a.x * b, a.y * b);
    }
    friend Point operator * (const double& a, const Point& b) {
        return Point(a * b.x, a * b.y);
    }
    friend Point operator / (const Point& a, const double& b) {
        return Point(a.x / b, a.y / b);
    }
    // 计算向量的模长
    double norm() {
        return sqrt(sqr(x) + sqr(y));
    }
    // 向量的单位化
    Point unit() {
        return Point(x / norm(), y / norm());
    }
};
vector <Point> P;
// -------------------- 向量与向量运算 --------------------

// 计算两个向量的叉积
double det(const Point& a, const Point& b) {
    return a.x * b.y - a.y * b.x;
}

// 计算两个向量的点积
double dot(const Point &a, const Point& b) {
    return a.x * b.x + a.y * b.y;
}

// 计算两个点的距离
double dist(const Point& a, const Point& b) {
    return (a - b).norm();
}

// -------------------- 凸多边形类 --------------------

struct PolygonConvex {
    vector <Point> p;
    PolygonConvex(int size = 0) {
        p.resize(size);
    }
};

// -------------------- 凸多边形运算 --------------------

#define next(i) ((i+1)%n)

bool compLess(const Point& a, const Point& b) {
    return cmp(a.x - b.x) < 0 || cmp(a.x - b.x) == 0 && cmp(a.y - b.y) < 0;
}

// 用a中的点求出凸包(逆时针顺序)
// 如果不希望在凸包的边上有输入点,把两个<改成<=
// 复杂度O(nlogn)
PolygonConvex convexHull(vector <Point> a) {
    PolygonConvex res(2 * a.size() + 5);
    sort(a.begin(), a.end(), compLess);
    a.erase(unique(a.begin(), a.end()), a.end());
    int m = 0;
    for(int i = 0; i < a.size(); i++) {
        while(m > 1 && cmp(det(res.p[m-1] - res.p[m-2], a[i] - res.p[m-2])) <= 0) {
            m--;
        }
        res.p[m++] = a[i];
    }
    int k = m;
    for(int i = int(a.size()) - 2; i >= 0; i--) {
        while(m > k && cmp(det(res.p[m-1] - res.p[m-2], a[i] - res.p[m-2])) <= 0) {
            m--;
        }
        res.p[m++] = a[i];
    }
    res.p.resize(m);
    if(a.size() > 1) {
        res.p.resize(m - 1);
    }
    return res;
}

int main() {
    scanf("%d%lf", &n, &r);
    Point tmp;
    for(int i = 0; i < n; i++) {
        scanf("%lf%lf", &tmp.x, &tmp.y);
        P.push_back(tmp);
    }
    PolygonConvex po = convexHull(P);
    int sz = po.p.size();
    double per = 0;
    for(int i = 0 ; i < sz ; i ++){
        per += dist(po.p[i],po.p[(i+1)%sz]);
    }
    ans = (int)(per + 2 * pi * r + 0.5);
    printf("%d\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值