简单题意
给出城堡的顶点,要在城堡外建一圈城墙,城墙到城堡的距离最少为L,问城墙的长度最小为多少
思路
猜想,就是城堡顶点的凸包的周长+一个半径为L的圆的周长,证明如下
引自这里
证明如下:假如顺时针给出四个点A、B、C、D。组成了凸四边形ABCD。我们不妨过A点作AE垂直于AB,同时过A点再作AF垂直于AD,过B点作BG、BH分别垂直于AB、BC。连结EG,垂线段的长度为L,过A点以AE为半径作一段弧连到AF,同理,使GH成为一段弧。此时EG=AB(边),AB段城墙的最小值为EF+弧EF+弧GH=AB+弧EF+弧GH。对所有点进行同样的操作后,可知城墙的最小值=四边形的周长+相应顶点的弧长(半径都为L)之和。
下面证明这些顶点弧长组成一个圆。依然以前面的四边形为例。A、B、C、D四顶点各成周角,总和为360*4=1440度,四边形内角和为360度,每个顶点作两条垂线,总角度为4*2*90=720度,所以总圆周角为1440-360-720=360度,刚好组成圆。
所以四边形ABCD的围墙最短= 四边形的周长+圆周长。推广到任意多边形,用同样的方法,城墙最短=凸包的周长 + 以L为半径的圆的周长。
首先,我们得出城墙最短=凸包的周长 + 相应顶点的弧长(半径都为L)之和。
再证明 相应顶点的弧长(半径都为L)之和=以L为半径的圆的周长。
事实上,设凸包顶点为n,n个顶点组成n个周角,角度为360*n=2*180*n,凸包的内角和为180*(n-2),作了2*n条垂线,和为2*n*90=180*n,所以总圆周角为2*180*n-180*(n-2)-180*n=360,组成圆。
直接跑模板即可
代码
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 1010;
int n, m, ans;
double r;
// -------------------- 通用基本常数 --------------------
const double eps = 1e-8;
const double pi = acos(-1.0);
// -------------------- 通用基本函数 --------------------
// 计算几何误差修正
inline int cmp(double x) {
return x < -eps ? -1 : (x > eps);
}
// 计算一个数的平方
inline double sqr(double x) {
return x * x;
}
inline double mySqrt(double n) {
return sqrt(max(0.0, n));
}
// -------------------- 二维点(向量)类 --------------------
struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
// 输入一个点
void input() {
scanf("%lf%lf", &x, &y);
}
friend Point operator + (const Point& a, const Point& b) {
return Point(a.x + b.x, a.y + b.y);
}
friend Point operator - (const Point& a, const Point& b) {
return Point(a.x - b.x, a.y - b.y);
}
friend bool operator < (const Point& a, const Point& b) {
return cmp(a.x - b.x) ? cmp(a.x - b.x) < 0 : cmp(a.y - b.y) < 0;
}
friend bool operator == (const Point& a, const Point& b) {
return cmp(a.x - b.x) == 0 && cmp(a.y - b.y) == 0;
}
friend Point operator * (const Point& a, const double& b) {
return Point(a.x * b, a.y * b);
}
friend Point operator * (const double& a, const Point& b) {
return Point(a * b.x, a * b.y);
}
friend Point operator / (const Point& a, const double& b) {
return Point(a.x / b, a.y / b);
}
// 计算向量的模长
double norm() {
return sqrt(sqr(x) + sqr(y));
}
// 向量的单位化
Point unit() {
return Point(x / norm(), y / norm());
}
};
vector <Point> P;
// -------------------- 向量与向量运算 --------------------
// 计算两个向量的叉积
double det(const Point& a, const Point& b) {
return a.x * b.y - a.y * b.x;
}
// 计算两个向量的点积
double dot(const Point &a, const Point& b) {
return a.x * b.x + a.y * b.y;
}
// 计算两个点的距离
double dist(const Point& a, const Point& b) {
return (a - b).norm();
}
// -------------------- 凸多边形类 --------------------
struct PolygonConvex {
vector <Point> p;
PolygonConvex(int size = 0) {
p.resize(size);
}
};
// -------------------- 凸多边形运算 --------------------
#define next(i) ((i+1)%n)
bool compLess(const Point& a, const Point& b) {
return cmp(a.x - b.x) < 0 || cmp(a.x - b.x) == 0 && cmp(a.y - b.y) < 0;
}
// 用a中的点求出凸包(逆时针顺序)
// 如果不希望在凸包的边上有输入点,把两个<改成<=
// 复杂度O(nlogn)
PolygonConvex convexHull(vector <Point> a) {
PolygonConvex res(2 * a.size() + 5);
sort(a.begin(), a.end(), compLess);
a.erase(unique(a.begin(), a.end()), a.end());
int m = 0;
for(int i = 0; i < a.size(); i++) {
while(m > 1 && cmp(det(res.p[m-1] - res.p[m-2], a[i] - res.p[m-2])) <= 0) {
m--;
}
res.p[m++] = a[i];
}
int k = m;
for(int i = int(a.size()) - 2; i >= 0; i--) {
while(m > k && cmp(det(res.p[m-1] - res.p[m-2], a[i] - res.p[m-2])) <= 0) {
m--;
}
res.p[m++] = a[i];
}
res.p.resize(m);
if(a.size() > 1) {
res.p.resize(m - 1);
}
return res;
}
int main() {
scanf("%d%lf", &n, &r);
Point tmp;
for(int i = 0; i < n; i++) {
scanf("%lf%lf", &tmp.x, &tmp.y);
P.push_back(tmp);
}
PolygonConvex po = convexHull(P);
int sz = po.p.size();
double per = 0;
for(int i = 0 ; i < sz ; i ++){
per += dist(po.p[i],po.p[(i+1)%sz]);
}
ans = (int)(per + 2 * pi * r + 0.5);
printf("%d\n", ans);
return 0;
}