声音克隆添加水印的原理(防止一切滥用)

这段Python代码展示了如何使用预训练模型在音频中添加不可察觉的水印,通过将文本转为比特流,分段嵌入并重复过程,确保信息隐藏。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【直接上代码】

******

def add_watermark(self, audio, message):
	if self.watermark_model is None:
		return audio
	device = self.device
	bits = utils.string_to_bits(message).reshape(-1)
	n_repeat = len(bits) // 32

	K = 16000
	coeff = 2
	for n in range(n_repeat):
		trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
		if len(trunck) != K:
			print('Audio too short, fail to add watermark')
			break
		message_npy = bits[n * 32: (n + 1) * 32]
		
		with torch.no_grad():
			signal = torch.FloatTensor(trunck).to(device)[None]
			message_tensor = torch.FloatTensor(message_npy).to(device)[None]
			signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor)
			signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze()
		audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy
	return audio

这段代码使用预训练的水印模型向音频中添加水印。水印是一段隐藏的信息,可以嵌入到音频中,而不影响音频的可听性。

原理:

  1. **比特转换:**将水印信息(文本消息)转换为比特流。
  2. **分段:**将比特流划分为 32 位长的块。
  3. **嵌入:**对于每个 32 位块:
  • 将音频信号的指定部分(长度为 16000 个采样点)转换为张量。
  • 将水印比特块转换为张量。
  • 使用预训练的水印模型将水印比特块嵌入到音频信号张量中。
  • 将嵌入水印的音频信号张量转换回 NumPy 数组。
  • 将嵌入水印的音频片段替换到原始音频中。

  • **重复:**重复以上过程,直到嵌入所有水印比特块。

预训练水印模型的作用:

预训练的水印模型是一个神经网络,它可以学习如何将水印比特块嵌入到音频信号中,同时最大程度地减少对音频质量的影响。该模型通过在大量音频数据上进行训练来学习这种映射。嵌入后,水印信息隐藏在音频信号中,并且可以稍后通过使用相同的预训练模型提取。

civilpy:Python数据分析及可视化实例目录941 赞同 · 36 评论文章​编辑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值