codeforces #300 E. Demiurges Play Again(tree DP)

2 篇文章 0 订阅

题目大意:

给定一棵树,根为1.


有一颗棋子在根上,2个人轮流,把棋子往叶子节点走。所有的叶子节点被从1~k(k是叶子的总数)编号。

先手的人,希望最终落在的叶子节点尽可能的大, 后手的人希望最终停留的叶子节点的编号尽可能的小。


有另外2个人负责给叶子节点进行编号,一个人希望最终停留的叶子节点的编号尽可能的大,另外一个人则希望编号尽可能的小。

问,第一个人编号后,棋手的游戏结果。    再输出第二个人编号后,棋手的游戏结果。


题解:

2个小时才想出来怎么做。。好吧我太弱了。


是这样,假设2个人轮流走嘛,假设现在是第一个人编号的。

A为希望结果数字大的玩家,B为希望结果数字小的玩家


对于每一个节点,A面对这个节点,可以取得的第f[i]大的数字,而B如果面对这个节点,则可以取得h[i]大的数字。


那么显然对于叶节点,f[i] = h[i] = 1

然后回溯的……

对于A而言,他的有一个幕后黑手在帮他,他一定会选择一个儿子状态,这个儿子装填的h[i]尽可能的大。

因为: 幕后黑手一定在这个儿子状态中,放入尽量多的大的数字,使得B不管怎么选,数字都是大的。


所以,f[i] =  min(h[j])   j是i的儿子

反之,B一定会选择最好的选择,因为幕后黑手一定编号好了,

则h[i] = sum(f[j])  j是i的儿子


因为,对于一个j是i的儿子,可以保证如果在j,并且是A面对这个局面,其结果一定是取得第f[j]大的数字,那么B一定要选择一个数字尽可能小的。而黑手,为了让这个最小的数字最大,一定会比较平均的分布这些节点。 从而可以得出上面的式子。(这个地方比较难理解,需要画图举例子…… 其实是我懒不想组织语言)


然后这是黑手要帮A的,如果黑手要帮B的话,只不过就是上面的A,B位置交换了一下~第K大变第K小而已了。


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;

const int maxn = 200000 + 10;

vector<int>g[maxn];
const int root = 1;
int leaf = 0;
int f[maxn], h[maxn];

int n;
void init()
{
	scanf("%d", &n);
	for (int i = 1 ; i != n ; ++ i)
	{
		int u, v;
		scanf("%d%d", &u, &v);
		g[u].push_back(v);
	}
}


void dfs(int r, int state)	//当前节点, 状态。 0为顺,1为逆
{
	if (!g[r].size())
	{
		++leaf;
		h[r] = f[r] = 1;
		return;
	}
	int shun = 0x7fffffff, ni=0;
	for (int i = 0; i != g[r].size(); ++ i)
	{
		int v = g[r][i];
		dfs(v, state ^ 1);
	}
	for (int i = 0; i != g[r].size(); ++ i)
	{
		int v = g[r][i];
		if (state==0)	shun = min(shun, h[v]);
		else	ni += f[v];
	}
	if (state==0)	f[r]=shun;
	else h[r]=ni;
}

void doit()
{
	dfs(root, 0);
	dfs(root, 1);
//	for (int i = 1; i <= n; ++ i)	cout<<i<<" "<< f[i]<<" " << h[i]<<endl;
	leaf/=2;
	cout << leaf-f[1] + 1<<" "<<h[1]<<endl;
}

int main()
{
	init();
	doit();
	return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值