题目大意:
给定一棵树,根为1.
有一颗棋子在根上,2个人轮流,把棋子往叶子节点走。所有的叶子节点被从1~k(k是叶子的总数)编号。
先手的人,希望最终落在的叶子节点尽可能的大, 后手的人希望最终停留的叶子节点的编号尽可能的小。
有另外2个人负责给叶子节点进行编号,一个人希望最终停留的叶子节点的编号尽可能的大,另外一个人则希望编号尽可能的小。
问,第一个人编号后,棋手的游戏结果。 再输出第二个人编号后,棋手的游戏结果。
题解:
2个小时才想出来怎么做。。好吧我太弱了。
是这样,假设2个人轮流走嘛,假设现在是第一个人编号的。
A为希望结果数字大的玩家,B为希望结果数字小的玩家
对于每一个节点,A面对这个节点,可以取得的第f[i]大的数字,而B如果面对这个节点,则可以取得h[i]大的数字。
那么显然对于叶节点,f[i] = h[i] = 1
然后回溯的……
对于A而言,他的有一个幕后黑手在帮他,他一定会选择一个儿子状态,这个儿子装填的h[i]尽可能的大。
因为: 幕后黑手一定在这个儿子状态中,放入尽量多的大的数字,使得B不管怎么选,数字都是大的。
所以,f[i] = min(h[j]) j是i的儿子
反之,B一定会选择最好的选择,因为幕后黑手一定编号好了,
则h[i] = sum(f[j]) j是i的儿子
因为,对于一个j是i的儿子,可以保证如果在j,并且是A面对这个局面,其结果一定是取得第f[j]大的数字,那么B一定要选择一个数字尽可能小的。而黑手,为了让这个最小的数字最大,一定会比较平均的分布这些节点。 从而可以得出上面的式子。(这个地方比较难理解,需要画图举例子…… 其实是我懒不想组织语言)
然后这是黑手要帮A的,如果黑手要帮B的话,只不过就是上面的A,B位置交换了一下~第K大变第K小而已了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
const int maxn = 200000 + 10;
vector<int>g[maxn];
const int root = 1;
int leaf = 0;
int f[maxn], h[maxn];
int n;
void init()
{
scanf("%d", &n);
for (int i = 1 ; i != n ; ++ i)
{
int u, v;
scanf("%d%d", &u, &v);
g[u].push_back(v);
}
}
void dfs(int r, int state) //当前节点, 状态。 0为顺,1为逆
{
if (!g[r].size())
{
++leaf;
h[r] = f[r] = 1;
return;
}
int shun = 0x7fffffff, ni=0;
for (int i = 0; i != g[r].size(); ++ i)
{
int v = g[r][i];
dfs(v, state ^ 1);
}
for (int i = 0; i != g[r].size(); ++ i)
{
int v = g[r][i];
if (state==0) shun = min(shun, h[v]);
else ni += f[v];
}
if (state==0) f[r]=shun;
else h[r]=ni;
}
void doit()
{
dfs(root, 0);
dfs(root, 1);
// for (int i = 1; i <= n; ++ i) cout<<i<<" "<< f[i]<<" " << h[i]<<endl;
leaf/=2;
cout << leaf-f[1] + 1<<" "<<h[1]<<endl;
}
int main()
{
init();
doit();
return 0;
}